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In this study, we presented a new type of coating based on polyelectrolyte multilayers containing
sequentially adsorbed active shRNA calcium phosphate nanoparticles for locally defined and temporarily
variable gene silencing. Therefore, we investigated multi-shell calcium phosphate-shRNA nanoparticles
embedded into a polyelectrolyte multilayer for gene silencing. As model system, we synthesized triple-
shell calcium phosphate-shRNA nanoparticles (NP) and prepared polyelectrolyte multilayers films made
of nanoparticles and poly-(i-lysine) (PLL). The biological activities of these polyelectrolyte multilayers
films were tested by the production of osteopontin and osteocalcin in the human osteoblasts (HOb)
which were cultivated on the PEM films. This new strategy can be used to efficiently control the bone
formation and could be applicable in tissue engineering.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

RNA interference (RNAI) is a very promising approach for the
treatment of inherited and acquired diseases [1—4] because it can
selectively inhibit the biosynthesis of proteins in cells. RNAi can be
induced by the introduction of synthetic siRNA or by intracellular
generation of siRNA from vector-driven expression of the precursor
small hairpin RNA (shRNA) [5]. The shRNA effects are longer-lived
compared with siRNA because the latter is continually produced
within the cells.

The major challenge for this approach is to find an efficient
delivery method for shRNA into cells [2]. Effective viral systems
were developed to achieve this goal, but there are several concerns
about the use of viruses, mainly the toxicity of viruses and the
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potential for generating a strong immune response due to the
proteinaceous capsid [5—7]. Therefore, a suitable non-viral vector
must be employed. Different systems were developed, e.g. poly-
mers [8,9], liposomes [10,11], peptides [12,13], or inorganic nano-
particles like silica, magnetite, clay, gold, and calcium phosphate
[14]. Such systems serve as a vector for active molecules which
can pass through the cell membrane, escape from cytoplasmatic
vesicles, and then reach their target in the cytoplasm.

We have recently shown that custom-made DNA-functionalized
calcium phosphate nanoparticles can be used for cell transfection
[15]. Their transfection efficiency can be increased if DNA is incor-
porated into the calcium phosphate particle where it is prevented
from intracellular degradation by nucleases [16,17]. Calcium phos-
phate is advantageous compared to other types of nanoparticles
due to its easy preparation [18], its high biocompatibility, and its
good biodegradability in biological systems [19]. Note that cationic
polymers and liposomes are often toxic towards cells [14].

The layer-by-layer (LbL) buildup of polyelectrolyte membrane
films (PEM films) consisting of oppositely charged polyelectrolytes
[20] offers new opportunities for the preparation of functionalized
biomaterial coatings. This technique allows the preparation of
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Fig. 1. SEM images of triple-shell calcium phosphate-shRNA nanoparticles functionalized with shRNA against osteopontin (Spp1) (A) and shRNA against osteocalcin (Bglap-rs1) (B).

supramolecular nano-architectures [21—26] with the specific
ability to control cell activation [21,24—26], and may also play a role
in the development of local drug delivery systems [22]. Peptides
and proteins, either chemically bound, physically adsorbed or
embedded into PEM films, retain their biological activities [27—29].

In the last years, it has also been shown that PEM films are
efficient to deliver plasmid DNA (pDNA). Lynn et al. found that
multilayered films consisting of naked pDNA and a degradable
polyamine were able to efficiently release pDNA from the surfaces
under physiological conditions which led to a subsequent in vitro
transfection of adherent cells [30]. Recently, we have also shown
that multilayered films can act as a reservoir of pre-complexed DNA
[31], and demonstrated clearly the multiple and time-scheduled in
situ DNA delivery mediated by B-cyclodextrin embedded into
a PEM film [19].

Until now, no study was directed to multilayers containing
siRNA or shRNA nanoparticles which possess gene silencing
activity. The aim of this work is to present a new type of coating
based on polyelectrolyte multilayers containing sequentially
adsorbed active shRNA calcium phosphate nanoparticles for locally
defined and temporarily variable gene silencing. Therefore, we
investigated multi-shell calcium phosphate-shRNA nanoparticles
embedded into a polyelectrolyte multilayer for gene silencing. As
model system, we synthesized triple-shell calcium phosphate-
shRNA nanoparticles (NP) and prepared PEM films made of nano-
particles and poly-(1-lysine) (PLL).

shRNAs against osteopontin (“Spp1”) or osteocalcin (“Bglap-rs1”)
were employed. Triple-shell calcium phosphate-Spp1-nanoparticles
and triple-shell calcium phosphate-Bglap-rs1-nanoparticles were
synthesized to inhibit the osteopontin and osteocalcin expression,
respectively. Osteopontin is an extracellular structural bone
protein, and osteocalcin is a noncollagenous bone protein. They
are typically employed as biomarkers for bone formation process.
The biological activities of these PEM films were tested by the
production of osteopontin and osteocalcin in the human osteo-
blasts (HOb) which were cultivated on the PEM films.

2. Materials and methods
2.1. Materials

Poly-1-lysine hydrobromide (PLL, My = 30 kDa) and YOYO-1 (1,1’-(4,4,8,8-tet-
ramethyl-4,8-diazaundecamethylene)bis[4-{(3-methylbenz-1,3-oxazol-2-yl)meth-
ylidine}-1,4-dihydroquinolinium]) tetraiodide were purchased from Sigma (St.
Quentin Fallavier, France). Bisbenzimide H 33258 (Hoechst) used for microscopy was
purchased from Invitrogen, Molecular Probes. ShRNA (mouse Spp1 and Bglap-rs1)
was purchased from SuperArray Inc.

2.2. Preparation of multi-shell calcium phosphate-shRNA nanoparticles

Multi-shell (triple-shell) calcium phosphate-shRNA nanoparticles were
prepared by a precipitation method under constant stirring as described earlier [17].
We used two types of shRNA: Spp1 for the silencing of osteopontin expression and
Bglap-rs1 for silencing of osteocalcin expression.

First, aqueous solutions of Ca(NO3),-4H,0 (6.25 mm) and (NH4),HPO4 (3.74 mm)
were adjusted to pH 9 with 0.1 m NaOH and then rapidly mixed with a peristaltic pumps
into a plastic vessel. Immediately thereafter, 1 mL of the mixture was taken with an
Eppendorf pipette and mixed with 0.1 mg of ShRNA dissolved in water (the concentra-
tions were 0.75 mg mL~' and 0.83 mg mL ™ for Spp1 and Bglap-rs1, respectively). These
nanoparticles consisted of a calcium phosphate core and an outer layer of shRNA for
electrostatic and steric functionalization and are denoted “single-shell” in the following.

To obtain multi-shell particles, the 0.5 mL of Ca(NOs3),-4H;0 solution (6.25 mm)
and 0.5 mL of (NH4);HPO4 solution (3.74 mm) were added to the dispersed single-
shell nanoparticles. Imnmediately thereafter, we added 0.1 mg of shRNA dissolved in
water as outer layer of the particles (the concentrations were 0.75 mgmL~! and
0.83mgmL ! for Spp1 and Bglap-rs1, respectively). These “triple-shell” particles
consisted of a calcium phosphate core and further layers of shRNA, calcium phos-
phate and shRNA.

2.3. Scanning electron microscopy

Scanning electron microscopy (SEM) was carried out with ESEM Quanta 400 FEG
instrument with gold—palladium-sputtered samples. 15 uL of the nanoparticle
dispersion was dried on the aluminum holder for 30 min at 37 °C and then sputtered
with an EMITECH Sputter Coater K550 (Ashford, UK) for 30 s with gold—palladium.

2.4. Dynamic light scattering

The average size of the nanoparticles was determined with a Zetasizer Nano ZS
(Malvern Instruments, Malvern, UK) with the following specifications: medium
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Fig. 2. Quartz crystal microbalance measurement. Frequency shifts (—Affv at 5, 15, 25
and 35 MHz) are shown as a function of sequential layer deposition of PLL and calcium
phosphate nanoparticles (NP).
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Fig. 3. In situ AFM images of (PLL—NP)g LBL polyelectrolyte films deposited on a quartz surface. A and B: Height mode AFM images; C: observation of a scratch performed on the
surface (the scratched zone is located on the right part of the image); D: profile section of the scratched film along the black line drawn on image C.

viscosity 0.8872 cP, refractive index (RI) medium 1.33, RI particle 1.14, scattering
angle 90°, temperature 25 °C. The zeta potential of the complexes was measured
with the following specifications: medium viscosity 0.8872 cP, dielectric constant
78.5, scattering angle 90°, temperature 25 °C.

2.5. Polyelectrolyte multilayered film preparation

Polyelectrolyte multilayered films were prepared on glass coverslips (CML,
France) pre-treated with 1072 m SDS and 0.12 M HCI for 15 min at 100 °C, and then
extensively rinsed with deionized water. Then glass slides were placed into a 24-
well plate. Next, a film consisting of alternating layers of poly(i-lysine) (PLL) and
nanoparticles (NP) (PLL—NP), was built up by alternated immersions for 10 min in
the corresponding solutions (300 uL each time). The PLL solution contained
0.5mgmL~! PLL in 0.15 m NaCl at pH 7.4, and the nanoparticle dispersion consisted
of 8 g nanoparticles in deionized water. After each layer deposition, the coverslips
were rinsed three times during 5 min with deionized water. PLL was deposited as
the last layer, so that cells could adhere to it. After the deposition of n bilayers, the
films were dried and sterilised under UV light for 15 min. Before cell seeding, the
films were put in contact with 1 mL of cell culture medium without serum for 24 h.

2.6. Quartz crystal microbalance

The films were monitored in situ with a quartz crystal microbalance using an
axial flow chamber QAFC 302 (QCM-D, D300, Q-Sense, Gotenborg, Sweden). QCM
works by measuring the resonance frequency shift (Af) of a quartz crystal induced by
polyelectrolyte or protein adsorption onto the crystal in comparison to the crystal in
contact with buffer. Changes in the resonance frequencies were measured at the
third overtone (v = 3), corresponding to the 15 MHz resonance frequency. A shift in
Afv can be related in a first approximation to a variation of the mass adsorbed to the
crystal by the Sauerbrey relation: m = —C Af]v, where Cis a constant characteristic of
the crystal used (in our case: C=17.7 ng cm~2Hz ). The details of the methodology
applied in the present work were described elsewhere [32].

2.7. Atomic force microscopy

The film deposited by QCM is imaged in liquid condition in deflection mode
using a Nanoscope IV from Veeco (Santa Barbara, CA, USA). Cantilevers with a spring

constant of 0.01 Nm™ and with silicon nitride tips were used (Model MSCT-AUHW
Veeco). Deflection mode images are scanned at a scan rate of 2 Hz with a resolution
of 512 x 512 pixels.

2.8. Cell culture

Human Osteoblasts (HOb) were grown in Osteoblast Growth Medium (Cell
Applications, Inc.). Cells were maintained at 37 °C in 5% CO, humidified atmosphere.

2.9. Immunofluorescence

After the cultivation on the layers for 21 days, the HOb cells were fixed with 2%
paraformaldehyde in phosphate buffered saline (PBS) for 4 min at room temperature
and incubated twice for 10 min with PBS containing 0.1% Triton X-100 (PBS-Tx) [33].
After a PBS wash, the cells were incubated overnight at room temperature with goat
anti-osteopontin or osteocalcin antibodies, respectively, as primary antibody diluted
to 5 pgmL~! in PBS. After overnight incubation at room temperature, the cells were
washed with PBS-Tx and incubated with a donkey anti-goat secondary antibody
diluted at 1/500 in PBS-Tx for 1 h at room temperature. The cells were washed with
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Fig. 4. RT-PCR analysis of osteocalcin expression in osteoblasts cultured for 21 days. A:
without shRNA; B: in contact with the multilayered film without shRNA; C: with
shRNA-functionalized nanoparticles in dispersion; D: with shRNA-functionalized
nanoparticles incorporated into the multilayered film (PLL-shRNA NP)s; E: RT-PCR
without any RNA as control. The total RNA was isolated and analyzed by RT-PCR. The
position of DNA length markers is indicated and the osteocalcin-amplified band is
detected at 370 bp. Control experiments (not shown) on the same RNA samples did not
show any significant variation in the content of the invariant 36B4 RNA.
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Fig. 5. Osteopontin and osteocalcin expression in osteoblasts cultured for 21 days in untreated cells (A and B), in dispersion in the presence of free dissolved shRNA (Cand D), in the presence
of dispersed shRNA-functionalized nanoparticles (E and F), on (PLL-shRNA NP); films (G and H), and on (PLL-shRNA NP)s (I and J) films. The expression of osteopontin and Osteocalcin was
detected by using goat antibody as primary antibody and Cy3-conjugated donkey anti-goat as secondary antibody. Nuclei were visualized by Hoechst 33258 staining (Blue).
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PBS-Tx, rinsed with PBS, and counterstained with Hoechst 33258 DNA dye
(5 ngmL~" bisbenzimide; Sigma) for 20s.

The cells were covered with mounting medium (Vector Laboratories Inc. Bur-
lingame, CA) and analyzed by fluorescence microscopy. Immunostaining for osteo-
pontin and osteocalcin expressing cells (red) was monitored with a cool snap
camera coupled to a Leica DRB microscope using a specific CY3 filter. We counted the
cells by labelling the cell nucleus with Hoechst 33258 DNA dye both for dispersion
and multilayers. The cell numbers were approximately the same. The amounts of
shRNA NP used in dispersion and multilayer were the same.

2.10. Reverse-transcriptase polymerase chain reaction

Total RNA was extracted from osteoblasts cultured for 21 days using the RNeasy
Micro Kit (Qiagen) according to the manufacturer’s instructions. 0.5 mg of total RNA
were used in a one-step RT-PCR system (Superscript Ill One-step RT-PCR system
with platinum Taq, Invitrogen). The primer sequences for osteocalcin were as
follows: 5'-GAAGCCCAGCGGTGCA-3’ and 5'-TGGGAGCAGCTGGGATGATG-3'. The
PCR products were analyzed on a 1.5% agarose gel. The primer pair amplified a DNA
band of 370 bp.

3. Results and discussions

3.1. Characterization of shRNA-functionalized calcium phosphate
nanoparticles

First, shRNA-functionalized calcium phosphate nanoparticles
were prepared by rapid mixing of aqueous solutions of calcium and
phosphate salts and immediate functionalization of the nano-
crystals with shRNA to prevent the aggregation of nanoparticles
[17]. These nanoparticles carried a negative charge due to the
negatively charged nucleic acids on their surface. The nucleic acids
provided both electrostatic and steric stabilization of the particles
and prevented their aggregation. The additional shells of calcium
phosphate and shRNA provide not only stabilization of the parti-
cles, but also an additional protection for the shRNA incorporated
into the first shell against endocellular nucleases, thus providing
much higher silencing activity [17].

Scanning electron microscopy (SEM) showed spherical particles
with a particle size of 100—250 nm for both kinds of shRNA
nanoparticles (Fig. 1). This was confirmed by dynamic light scan-
ning (DLS) which also showed that the particles were not
agglomerated. The zeta potential of the nanoparticles was clearly
negative (about —25 mV).

3.2. QCM analysis

The polyelectrolyte multilayer system was based on nano-
particles and sequentially deposited PLL. The assembly of
(PLL—NP),-multilayered films was monitored by means of a dissi-
pation-enhanced quartz crystal microbalance (QCM) (Fig. 2). The
evolution of Affv showed a regular film deposition starting with the
first layer of PLL. The increase in —Affyv with the number of
deposited layers suggested that regular film deposition occurred.

3.3. AFM analysis

In the next step, atomic force microscopy (AFM) was used to get
additional information about the structure of these LbL architec-
tures. In Fig. 3, a film made of alternating layers of PLL and nano-
particle was examined in situ by AFM in the liquid phase. The film
thickness was evaluated by scratching the film with the AFM tip
and estimated to 20 nm for the deposited materials.

3.4. Gene silencing
To test gene inhibition abilities of the nanoparticles embedded

into the polyelectrolyte multilayer system, HOb cells were seeded
on the (PLL-NP); and on the (PLL-NP)s multilayer films. To

determine the gene silencing efficiency of our system we analyzed
the expression of osteocalcin by RT-PCR after the cells were brought
in contact with shRNA nanoparticles, either in dispersion or
incorporated into the multilayered film (Fig. 4). Our results clearly
indicate that when incorporated into the multilayered film, the
shRNA nanoparticles induced a much stronger inhibition of the
osteocalcin expression than the dispersed nanoparticles.

For further characterization, the expression of osteopontin and
osteocalcin in HOD cells was detected by immunofluorescence and
the nuclei were visualized by Hoechst 33258 staining (Fig. 5).
Osteopontin and osteocalcin were not inhibited in the untreated
cells (Fig. 5A and B). In the case of the free shRNA (osteopontin) and
shRNA (osteocalcin) in solution, the gene expression was also not
inhibited (Fig. 5C and D). In the case of the dispersed nanoparticles,
some inhibition of osteopontin and osteocalcin was observed
(Fig. 5E and F). When the nanoparticles were incorporated into the
multilayered film (PLL—NP);, the expression of osteopontin and
osteocalcin was clearly inhibited (Fig. 5G and H), but in the case of
(PLL—NP)g, the expression of osteopontin and osteocalcin was fully
inhibited (Fig. 5I and J).

4. Conclusions

The major challenge for this approach was to find an efficient
method for shRNA delivery into cells. Using the multilayered films,
we can incorporate more than one active molecule (DNA or siRNA
for example) at the different levels, which act as a reservoir for cells
and can be released slowly. In this case we reach a gradual and
prolonged therapeutic effect. We can also get a more specific and
sequential response by incorporation of smaller amounts of active
molecules at different depth than the one obtained after treatment
of cells in solution. We report here the first demonstration of
a multilayered films-based delivery system containing nano-
particles for gene silencing of osteopontin and osteocalcin which
are specific for bone cells. A new strategy based on a multi-shell
calcium phosphate multilayered films for gene silencing of bone
extracellular matrices was brought forward. This new strategy can
be used to efficiently control the bone formation and could be
applicable in tissue engineering.
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Appendix

Figures with essential color discrimination. Most of the figures
in this article have parts that are difficult to interpret in black and
white. The full color images can be found in the on-line version, at
doi:10.1016/j.biomaterials.2010.04.024.
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