摘要

基因药物的一种，小干扰 RNA 电荷密度较低且为刚性骨架，与阳性聚合物、脂质体载体复合能力差，导致其包载率低，限制了其在临床中的应用。在本课题中利用亲水性的 siRNA 和疏水性的脂质分子的特性，设计了两亲性的 siRNA 脂质分子（siRNA-phospholipids）键合物，不仅克服了 siRNA 结构呈刚性的问题，又同时提高了 siRNA 包载率。siRNA 脂质分子（siRNA-phospholipids）键合物的合成是将正义链 siRNA 和反义链 siRNA 分别通过二硫键与脂质分子交联，形成正义链 siRNA-lipid 和反义链 siRNA-lipid，再通过退火反应形成。该 siRNA-phospholipids 键合物不仅能够沉默基因表达，而且可作为包载疏水抗癌药物的纳米颗粒的组分。将 siRNA-phospholipids 键合物与阳离子脂质分子、PLGA 和抗癌药阿霉素（DOX）通过纳米沉淀法制备得到纳米颗粒（siRNA-PCNPs）。该纳米颗粒能够将 siRNA 与疏水抗癌药输送进入肿瘤。人宫颈癌体内荷瘤裸鼠模型实验表明，该给药系统能够有效地抑制肿瘤的生长。上述结果表明，siPlk1-PCNPs 是一种极具潜力的安全、有效的基因和抗癌药物输送体系。
SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment

Hongmei Liua,b, Yan Lia,b, Anbu Mozhic, Liang Zhanga,b, Yilan Liua,b, Xia Xua, Jianmin Xinga, Xingjie Liangc, Guanghui Maa, Jun Yanga,*, Xin Zhanga,*

a National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
b University of Chinese Academy of Sciences, Beijing 100049, PR China
c CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, PR China

\textbf{A B S T R A C T}

Due to low charge density and stiff backbone structure, small interfering RNA (siRNA) has inherently poor binding ability to cationic polymers and lipid carriers, which results in low siRNA loading efficiency and limits siRNA success in clinical application. Here, siRNA-phospholipid conjugates are developed, which integrate the characteristics of the two phospholipids to self-assemble via hydrophilic siRNA and hydrophobic phospholipid tails to overcome the siRNA's stiff backbone structures and enhance the siRNA loading efficiency. In this study, the thiol-modified sense and antisense siRNA are chemically conjugated with phospholipids to form sense and antisense siRNA-phospholipid, and then these sense or antisense siRNA-phospholipids with equal amounts are annealed to generate siRNA-phospholipids. The siRNA-phospholipids can serve dual functions as agents that can silence gene expression and as a component of nanoparticles to embed hydrophobic anticancer drugs to cure tumor. siRNA-phospholipids together with cationic lipids and DSPE-PEG2000 fuse around PLGA to form siRNA-phospholipids enveloped nanoparticles (siRNA-PCNPs), which can deliver siRNAs and hydrophobic anticancer drugs into tumor. In animal models, intravenously injected siRNA-PCNPs embedded DOX (siPlk1-PCNPs/DOX) is highly effective in inhibiting tumor growth. The results indicate that the siRNA-PCNPs can be potentially applied as a safe and efficient gene and anticancer drug delivery carrier.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Gene silencing via RNA interference (RNAi) has been demonstrated as a great potential therapeutic agent for cancer treatment. The emerging RNAi therapy delivers gene-silencing RNAs to the cytoplasm where they recognize and degrade the complementary target mRNA in a sequence-specific manner at a post-transcriptional level \cite{1,2}. However, safe and efficient transduction of siRNAs to target tissues and cells remains a major challenge for clinical trials. Many kinds of nanosized cationic delivery systems have been developed for siRNAs delivery via electrostatic interaction, such as cationic polymers \cite{3–6}, cationic lipids and so on \cite{7,8}. However, due to low charge density and stiff backbone structure, siRNA with 21–23 bp nucleotides has inherently poor binding ability to cationic polymers and lipids carriers \cite{9}, which results in low siRNA loading efficiency. In order to achieve high loading efficiency for gene transfection, cationic polymers and lipids must be used in an excess amount, whereas they often exhibit severe cytotoxicity \cite{10}. Herein, designing a successful delivery platform with higher siRNA loading efficiency and less cationic materials is a great challenge in therapeutic gene delivery application.

To address this problem, researchers have studied a variety of RNA-based conjugate micro- and nanostructures, such as multimeric siRNA, siRNA homopolymers and microhydrogels for siRNAs delivery, which are designed by facile chemical conjugation and complementary hybridization \cite{11–13}. These siRNA-based conjugate structures can form stable polyion complex formation, which could increase charge density and overcome stiff backbone structure of siRNA, leading to enhanced siRNA loading efficiency and gene silencing ability with less cationic materials. However, these
siRNA-based conjugate structures might augment an intracellular immune response, due to remaining as long dsRNA before Dicer-mediated degradation [14]. According to the previous reports siRNA conjugates are desired to disintegrate into monomeric siRNA (mono-siRNAs) in the cell for reduced immune responses [13,15–17]. In order to reduce the immune responses, siRNA-based conjugate should be constructed to have the ability to release monomeric siRNA after internalization into the cells. Therefore, a smart environment-sensitive linkage (a disulfide bond) was employed for programmed release of monomeric siRNA, which can greatly contribute to successful siRNAs delivery.

Herein, we adopted chemically conjugated siRNA-phospholipids as a carrier to change the physicochemical properties of siRNA for overcoming the above-mentioned siRNA delivery difficulties. Since the Polo-like kinase 1 specific siRNA (siPlk1) has greater effect against cancer and has been widely studied according to relevant research literature [18,19]. So, it was used as a model siRNA drug in our work. In this study, the thiol-modified sense and antisense siPlk1 were chemically conjugated with phospholipids to form sense and antisense-phospholipid, and then these sense and antisense-phospholipids with equal amounts were annealed to generate siPlk1-phospholipids. The siPlk1-phospholipids conjugates integrated the characteristics of phospholipids to self-assemble via hydrophilic siPlk1 and hydrophobic phospholipid tails to overcome the siPlk1’s stiff backbone structures. These materials could release monomeric siPlk1 under the cytosolic environment. Compared with naked siPlk1, siPlk1-phospholipids conjugates possessed not only negative charges but also amphiphilic structure. Therefore, these chemically conjugated siPlk1 (siPlk1-phospholipids) with two phospholipids fulfill the enhanced loading efficiency of siPlk1 as desired. The siPlk1-phospholipids conjugates, together with Dimethyldioctadecylammonium bromide (DDAB) and 1,2-distearoyl-sn-glycero-3-phosphoethanol amine-N-methoxy-poly (ethylene glycol 2000) (DSPE-PEG2000), could fuse around ester-terminated poly (D, L-lactic-co-glycolic acid) (PLGA) to form chemically conjugated siPlk1-phospholipids enveloped hybrid nanoparticles (siPlk1-PCNPs) by a single-step nanoprecipitation method [20,21]. We proposed that the siPlk1-PCNPs comprise three layers (Fig. 1): (1) the outer PEG layer, which is expected to prolong the siPlk1-PCNPs circulation time and escape from immunological recognition; (2) the middle layer, which may be composed of siPlk1-phospholipids, cationic lipids (DDAB) and DSPE. It is speculated that small amount of DDAB could be added to balance electrostatic repulsion between negatively charged siPlk1-phospholipids and serve to hold siPlk1s together, thus the siPlk1-phospholipids might form stable and compact structure around PLGA surface; (3) the inner core PLGA polymers, which provide the hydrophobic interaction with siPlk1-phospholipids, DDAB and DSPE-PEG2000 tails, and where encapsulate water insoluble drugs.

Fig. 1. The synthetic routes of siPlk1-phospholipids and construction of the siPlk1-PCNPs/DOX.
Considering the siPlk1-PCNPs' structures, we hypothesized that the siPlk1-PCNPs might exhibit the following advantages: (1) load higher siPlk1 amount with less cationic materials; (2) form stable and compact structure to enhance the colloidal stability in blood environment; (3) release monomeric siPlk1 under a cytotoxic environment in the cells; (4) encapsulate hydrophobic drugs (e.g., doxorubicin (DOX)) to kill tumors in combined effects. To test this hypothesis, we developed lipid-PLGA hybrid nanoparticles as control groups, which could electrostatically interact with siPlk1 to form siPlk1-NPs. SiPlk1-NPs and siPlk1-PCNPs have same quality of NPs as well as cationic materials. Compared with siPlk1-NPs, the physicochemical properties, in vitro and in vivo gene silencing effect of the siPlk1-PCNPs were evaluated. Meanwhile, the combinations of siPlk1 and DOX for tumor treatment in vitro and in vivo were also investigated.

2. Materials and methods

2.1. Materials

18:1 PDE PE (L2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionyl]) was obtained from Avanti. 12-distearyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly (ethylene glycol 2000) (DSPE-PEG2000) was purchased from Shanghai Advanced Vehicle Technology Ltd Co. 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) and ethidium bromide (EtBr) were purchased from J&K Scientific Ltd. Dimethyl dioctadecylammonium bromide (DDAB) and triethylenetetramine (TEA) were bought from Alfa Aesar. DHPE-Texas Red (Texas Red dye) was provided by Su Zhou Ribo Life Science Co. Ltd. (Suzhou, China). In situ cell death kit, POZD, was obtained from Roche (Mannheim, Germany). Tris (2-carboxyethyl) phosphate hydrochloride (TCEP) was purchased from TCI (Japan). Doxorubicin hydrochloride (DOX HCI) was purchased from Dalian Meilun Biotech Co. Ltd., (Dalian, China) and deproteinated with trichylenamine in dimethyl sulfoxide (DMSO) to obtain the hydrophobic DOX. Dulbecco's Modified Eagle Medium (DMEM), penicillin, streptomycin, trypsin-EDTA and fetal bovine serum (FBS) were purchased from Thermo.

2.2. Synthesis of siPlk1-phospholipid

The siPlk1-phospholipids were synthesized according to previous report with simple modification [22]. 3'-thiol-modified sense and antisense siPlk1 (sense siPlk1-SH and antisense siPlk1-SH) were treated by TCEP to reduce disulfide protected. In brief, 3% TCEP solution was added to 10 mol lylphosphoryl thiolated single-stranded siPlk1. After 1 h, 750 μL of absolute ethanol were added to the mixture and vortexed. The mixture solution was centrifuged at 14,000 g for 20 min. Then, ethanol was decanted and fresh ethanol was added for 3 times to clear residual TCEP. Air dried pellet was dissolved in 10 μL DEPC treated deionized water. 30 nmol of PDE PE dissolved in 10 μL CHCl3, and 100 μL DMSO mixed solution was reacted with sense siPlk1-SH and antisense siPlk1-SH for 24 h at room temperature with gentle stirring to form sense siPlk1-phospholipid and antisense siPlk1-phospholipid. After overnight incubation, the reaction solutions were diluted with 500 μL DEPC treated deionized water and ultracentrifuged three times for 2 min each at 12,000 g using an Amicon Ultra-4 centrifugal filter (MWCO: 10,000, Millipore, Billerica, MA) to remove unreacted PDE PE and produced 2-phosphorylserine. SiPlk1-phospholipids were prepared by complementary hybridization between equal amounts of the sense and the antisense siPlk1-phospholipid, which was stirred overnight at room temperature. The siPlk1-phospholipids were characterized by gel retardation assay for their integrity and saved under -20 °C, and the concentration of siPlk1-phospholipid was determined by measurement of UV absorbance at 260 nm and 280 nm using IMPLEN P330.

The extent of the conjugation of siRNA-phospholipid was measured by the released amount of 2-pyridinethione using UV spectrophotometry. This method was performed as described previously [23]. In brief, the concentration of 2-pyridinethione was determined by measuring the OD value at 343 nm using TU-1810 ultraviolet and visible spectrophotometer (Beijing, China).

10 μM N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP) was completely reacted with 10 μM PDE PE for 2 h, which got OD value at 343 nm. This OD value was considered as 100. 30 μM of PDE PE was reacted with 10 μM sense strand siPlk1-SH which measured OD values with different time. The values were represented as the ratio of the OD values of PDE PE reacting with sense siPlk1-SH at different time samples compared to the OD value of SPDP reacting with 10 μM DTT. The percentage of release of 2-pyridinethione was calculated using the following equation:

\[
\% \text{ Release of 2-pyridinethione} = \frac{A_{343}}{A_{343}^{100}} \times 100
\]

\(sV A343 \) was the OD values of 2-pyridinethione released from SPDP reacting with 10 μM DTT; \(A_{343}^{100} \) was the OD value of 2-pyridinethione released from PDE PE reacting with sense siPlk1-SH at different time.

2.3. Preparation of different formation of NPs

SiPlk1-PCNPs were prepared via a single-step nanoprecipitation method [20]. In brief, PLGA and siPlk1-phospholipids were dissolved in DMSO, respectively. DDAB and DSPE-PEG2000 were dissolved in DMSO and CHCl3 mixture (1:1, v/v), respectively. PLGA/CHCl3/DSPE-PEG2000/siPlk1-phospholipids (at the mass ratio of 260/30/30/133; NPs/siPlk1 weight ratio of 24/1) were added together and vortexed vigorously for 2 min. The resulted mixed solution was slowly dripped into DEPC treated water solution under vigorous stirring conditions for 20 min, and then, followed by gently stirring for 2 h at room temperature. CHCl3 was transferred by vacuum bump. The other remaining organic solvent was separated by using an Amicon Ultra-4 centrifugal filter (MWCO: 10,000 Millipore, Billerica, MA).

The blank NPs were prepared through the same method with PLGA/CHCl3/DSPE-PEG2000/siPlk1-phospholipids (at the mass ratio of 260/30/30/133). The mixtures were added together and vortexed vigorously for 2 min, and then, dripped into DEPC treated water solution under vigorous stirring conditions for 20 min followed by gently stirring for 2 h at room temperature. CHCl3 was transferred by vacuum bump. The other remaining organic solvent was separated by using an Amicon Ultra-4 centrifugal filter. The siPlk1-NPs were formed by incubation of blank NPs with siPlk1 at room temperature for 30 min. The complexes were characterized by gel retardation assay for binding of siPlk1 with NPs. The siPlk1-NPs contained PLGA/CHCl3/DSPE-PEG2000/siPlk1 at a mass ratio of 260/30/30/4/4 and the NPs/siPlk1 weight ratio of 72/1.

To form siPlk1-PCNPs/DiR and siPlk1-NPs/DOX, DOX was dissolved into the PLGA-DMSO solution. The following operation was similar with the method to prepare the corresponding NPs. The NPs solution was washed three times using a millipore centrifugal filter device (MWCO: 10,000) to remove free DOX. The concentration of DOX in various NPs was measured by UV-Vis analysis. 200 μL of siPlk1-PCNPs/DiR and siPlk1-NPs/DOX solutions were collected separately and mixed with 1800 μL DMSO. The loaded amount of DOX was obtained by quantifying the absorbance of DOX at 485 nm. DOX loading was calculated using the following equation:

\[
\text{Drug loading efficiency} = \frac{\text{Amount of DOX in NPs}}{\text{Amount of DOX loaded NPs}} \times 100
\]

\[
\text{Drug encapsulation efficiency} = \frac{\text{Amount of encapsulation DOX}}{\text{Amount of DOX used for NPs preparation}} \times 100
\]

The release of DOX from NPs was examined by incubating NPs in PBS at 37 °C under agitation. PBS was replenished at different time points. Samples were examined by a microplate reader with excitation at 470 nm and emission at 590 nm. siPlk1-PCNPs/DiR were prepared just as the method to form siPlk1-PCNPs/DOX. DiR was used instead of DOX.

2.4. Physicochemical characterization

The morphology of the blank NPs, siPlk1-PCNPs and siPlk1-NPs were determined by transmission electron microscopy (H-7650 TEM, Japan). These NPs were dripped on to 200 mesh copper grids coated with carbon and were dyed with 2% phosphotungstic acid. To further ascertain the structure of siPlk1-PCNPs, cryo-transmission electron microscopy (JEI Tecnai 20 Cryo-TEM) was used to take images in a frozen state.

In order to examine a hybrid NPs structure, fluorescent dye-labeled NPs with micrometer scales were prepared and photographed by using 410s confocal laser scanning microscope (Nikon CLSM, Japan) with a ×100 objective (Oil N.A.), Texas Red conjugated lipid (DHPE-Texas Red) and DOX were dissolved in chloroform and DMSO mixed solution, DSPE-PEG2000 and siPlk1-phospholipids were dissolved in DMSO, and then mixed with DHPE-Texas Red, DDAB, DSPE-PEG2000 and siPlk1-phospholipids. The mixed solution was added dropwise into DEPC treated deionized water and ultracentrifuged for 3 times. The fluorescence emission of the DHPE-Texas Red (Ex/Em = 595/615 nm) and Hoechst 33342 (Ex/Em = 350/461 nm) was detected by using NIS-Elements Viewer 3.20 confocal software operation.

The hydrodynamic sizes and surface zeta potentials of blank NPs, siPlk1-NPs and siPlk1-PCNPs were measured by a dynamic light scattering (DLS) instrument (Malvern)...
Nano ZS). Colloidal stability was measured by incubating siPlk1-NPs and siPlk1-PCNPs at concentrations of 1 mg/mL in DMEM containing 10% FBS at 37°C under gentle stirring. At each time point, the mean diameters of hybrid NPs were monitored using DLS.

To evaluate the loading efficiency of siPlk1-PCNPs and siPlk1-NPs with siPlk1, ethidium bromide dye assay was performed as previously described and made some changes [24]. The dye, EtBr, could intercalate between the pairs of siRNA, to form highly fluorescent complexes. SiPlk1-PCNPs and siPlk1-NPs were prepared with the different NPs:siRNA mass ratio of 144:1, 72:1, 24:1 and 12:1. Then, siPlk1-PCNPs and siPlk1-NPs were centrifuged (30 min, 14,000 g, 4°C) and the supernatant were collected. The supernatant mixed with 12 μg/mL EtBr and detected by fluorescence spectrophotometer (590 nm emission; 490 nm excitation) (Hitachi. Japan). Fluorescence of EtBr in the absence siPlk1 was considered as background and the fluorescence of EtBr:siPlk1 complex with total siPlk1 was considered as 100 and the % fluorescence was measured for different samples. The relative fluorescence was calculated using the following equation:

\[\text{Relative Flu.} = \frac{\text{Fl. (obs) - Fl. (EtBr)}}{\text{Fl. (total siPlk1 - EtBr) - Fl. (EtBr)}} \times 100 \]

Where Fl. (obs) was the fluorescence of siPlk1-EtBr in supernatant; Fl. (total siPlk1 - EtBr) was the fluorescence of total siPlk1 used binding with NPs; Fl. (EtBr) was the fluorescence of EtBr alone.

To test the loading ability of siPlk1-PCNPs and siPlk1-NPs, the gel electrophoresis was carried out according to the method mentioned above. SiPlk1-PCNPs and siPlk1-NPs complexed with siRNA-phospholipids at NPs:siRNA mass ratio 144:1, 72:1, 24:1 and 12:1, respectively were prepared for electrophoresis. The gel was visualized by a UV transilluminator at an excitation wavelength of 302 nm.

The siPlk1 loading ratio and encapsulation efficiency were calculated using the following equation:

\[\text{siPlk1 loading efficiency} = \frac{\text{Amount of equivalents siPlk1 in NPs}}{\text{Amount of siPlk1 - phospholipids + Amount of NPs}} \times 100 \]

The weight of NPs was the total weight of DDBB, DSPE-PEG2000 and PLGA.

The amount of siPlk1 released into the supernatant over different incubation time points was measured by Quant-IT™ RiboGreen™ RNA Reagent (Invitrogen). SiPlk1-PCNPs were incubated with 10 mM DT in PBS or PBS without DT at 37°C with gentle stirred. At different time point, the 100 μL samples were obtained and were centrifuged (15 min, 14,000 g, 4°C) for recovery of the supernatant for storage. For the low-range assay, Quant-IT™ RiboGreen™ RNA Reagent 100 μL was added to microplate wells. Samples were excited at 485 nm and the fluorescence emission intensity was measured at 530 nm, using a fluorescence microplate reader (SpectraMax M5, Molecular Devices, CA).

The HeLa cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) high glucose supplemented with 10% FBS and 1% v/v penicillin/streptomycin at 37°C with 5% CO2. The cytotoxicity of the various NPs was evaluated through the MTT assay against the HeLa cells. 4000 cells were seeded in 24-well plates and incubated at 37°C in a 5% CO2, humidified atmosphere in the dark. The 50 μL TUNEL reaction mixtures on samples and incubated for 60 min at 37°C in a humidified atmosphere in the dark. The 50 μL TUNEL reaction mixtures were mixed with 2 μL enzyme solution and 48 μL label solution. After rinsed with PBS for three times, the slides could be washed in a drop of PBS under a fluorescence microscope by using 488 nm excitation and 530 nm emission at this state. The cells with green fluorescence were defined as apoptotic cells.

2.5. In vivo experimentation

All protocols for this animal study were confirmed the Guide for the Care and Use of Laboratory Animals. All procedures involving experimental animals were performed in accordance with protocols approved by the Committee for Animal Research of Peking University, China. (2 x 105) cells in 100 μL were subcutaneously injected into the arm of the 5-week-old female BALB/c nude mice. Tumors were allowed to grow to a uniform volume (~30 mm3).

2.6. Tumor target

siPlk1-PCNPs/Dox (200 μL) were intravenously injected to Hela-bearing mice via tail vein using a syringe. 4 h after injection, the mice were imaged by the Kodak in vitro imaging system with excitation at 470 nm and emission at 570 nm. Free Dox (at 2 mg/kg, 200 μL), siPlk1-NPs/Dox and siPlk1-PCNPs/Dox (at 2 mg/kg, 200 μL) were intravenously injected to Hela-bearing nude mice via tail vein using a syringe. 4 h after injection, the mice were sacrificed and the tumors were harvested. To determine the tumor tissue distributions of siPlk1-NPs/Dox and siPlk1-PCNPs/Dox, tumors treated with siPlk1-NPs/DOX, siPlk1-PCNPs/DOX fluorescence in the tumor was imaged by the Kodak in vivo imaging system with excitation at 470 nm and emission at 600 nm.

Then, the tumor tissues were cross-sectioned using a vibratome microtome. In order to stain cell nucleus, the sectioned tissues were incubated in DAPI (0.05 μg/mL) solution in saline for 0.5 h at room temperature. Confocal imaging of tumor tissues was performed using CLSM equipped with 40 x oil objective and filter sets (DAPI (Ex341/Em461), DOX (Ex543/Em570-620)).

2.7. Tissue distribution

Free Dox (at 4 mg/kg, 200 μL), siPlk1-NPs/Dox and siPlk1-PCNPs/Dox (at 4 mg/kg, 200 μL) were intravenously injected to ICR mice via tail vein using a syringe. 1 day after injection, the mice were sacrificed and the tissues were harvested. To determine the tissue distributions of siPlk1-NPs/Dox and siPlk1-PCNPs/Dox, staining of mouse heart, liver, spleen and kidney were performed. Tissue fluorescence in the specimen was imaged by the Kodak in vivo imaging system with excitation at 470 nm and emission at 600 nm. Quantitative analysis for the tissue distribution of micelles was carried out using the Living Imaging Software.

2.8. Blood pharmacokinetics

To determine pharmacokinetics, either Dox HCl (at 4 mg/kg, 200 μL) siPlk1-NPs/Dox or siPlk1-PCNPs/Dox (at 4 mg/kg, 200 μL) was intravenously injected into ICR mice through the tail vein using a syringe [27]. A blood sample (20 μL) was collected from the tail vein at different time points post-injection and mixed with K3-EDTA (0.5 μL, an anticoagulation agent). To extract DOX, aceton (60 μL) was added to the blood, vortexed, and then the solution was centrifuged (5000 g, 10 min). The supernatant was collected and stored at 80°C until the time of storage.

To determine the localization of NPs, HeLa cells (10,000 cells/well) were seeded in a 35 mm glass bottom culture dish and incubated for 24 h at 37°C in 5% CO2, allowed to grow until 50% confluent and followed by adding the siPlk1-PCNPs. After 2 h and 8 h of incubation, the cells were washed with PBS twice, and 1 mL of fresh medium containing Lysotracker™ Green (Invitrogen) was added following the manufacturer’s instructions. The cells were visualized by CLSM.

HeLa cells were plated on 6-well plates at a density of 50,000 cells/well and allowed to attach at 37°C in a 5% CO2 incubation for 24 h. The HeLa cells were transfected with PBS, blank NPs, free siPlk1, nonsense siRNA:PCNPs, siPlk1-PCNPs and siPlk1-NPs for 12 h, and then the culture medium was replaced with fresh DMEM medium. After incubation for another 24 h at 37°C, the mRNA levels of Plk1 were detected by reverse transcription-polymerase chain reaction (RT-PCR).

RT-PCR was performed as described previously [3]. The amount of GAPDH was as follows: Plk1-forward 5’-AGGTCGACCAGCGTGTACCTAC-3’, Plk1-reverse 5’-ATTAGGCTTCACACAGGGTCTC-3’, GAPDH-forward 5’-TTCACACCAGTGGA- GAAGGC-3’, GAPDH-reverse 5’-GGCATTGAGCTTGTGGCAGTA-3’. The mRNA level of Plk1 was normalized to GAPDH.
2.9. Anticancer effect

Anticancer effect of DOX was evaluated by measuring the tumor volume in a double-blinded manner. After reaching a tumor volume by ~30 mm³, the tumor HeLa-bearig mice were randomized into seven groups. The mice received PBS (200 µL), free DOX, free siPlk1 + free DOX, nonsense siRNA-PCNPs/DOX, siPlk1-NPs/DOX, siPlk1-PCNPs/DOX (at 2 mg/kg DOX, 200 µL) and free siPlk1 (1 mg/kg 200 µL), through tail vein injection at day 0, 2, 4 and 6 post initial treatment. Tumor volume was measured as follows:

\[V = \frac{a \times b^2}{2} \]

where \(a \) and \(b \) represent the major and minor axes of a tumor, respectively. The lengths of the axes were measured using a caliper. Tumor volume in each group was compared by relative tumor volume [28]:

Relative tumor volume = tumor volume/initial tumor volume before treatment

2.10. Measurements of Plk1 expression in tumor tissue

Tumor tissues were collected 24 h after the last injection, digested by an RNeasy mini-kit. The level of Plk1 mRNA was analyzed by RT-PCR as describe above. To determine the Plk1 expression in tumor tissue after treatments, tumor tissues were collected 24 h after the injection. The tumor tissues were lysed and the total 80 µg protein was collected and analyzed as described above.

2.11. TUNEL assay in tumor tissue

The mice were sacrificed 16 days after the first injection, and tumor tissues were collected and fixed in 4% (w/v) paraformaldehyde. In situ TUNEL assay was performed on the excised tumor tissues using in situ cell death detection kit, POD (Roche) according to the manufacturer’s protocol. Tumor sections were transferred onto the glass slide and deparaffinized. 50 µL of proteinase K (50 µg/mL) in TBS (pH 8.0) was added onto the slices and incubated for 20 min at room temperature. After rinsed with PBS for three times, the slides were incubated with TUNEL reaction mixtures for 60 min at 37 °C in a humidified atmosphere in the dark. The slides were washed with PBS. The 50 µL TUNEL reaction mixtures were mixed with 2 µL enzyme solution and 48 µL label solution. After rinsed with PBS for three times, the slides could be analyzed in a drop of PBS under CLSM by using 488 nm excitation and 530 nm emission at this state. The cells with green fluorescence were defined as apoptotic cells. DAPI was used to stain cell nucleus.

2.12. Statistical analysis

Statistical analysis was performed by using the Student’s t-test with \(p < 0.05 \) as significant difference. The experimental results were given in the format of mean, mean ± SD in the figures.

3. Results and discussion

3.1. Synthesis siPlk1-phospholipids, preparation and characterization of siPlk1-PCNPs/DOX

The synthetic routes and chemical structures of siPlk1-phospholipids conjugates were given in Fig. 1. The 3'-thiol-modified sense and antisense siPlk1 were chosen as reactive materials, whereas the 5’-end of the antisense siRNA is essential for RNA-inducing silencing complex (RISC) loading [29]. The 3'-thiol-modified sense and antisense siPlk1 were conjugated with PDP PE via a disulfide bond, respectively, which could avoid affecting the biological activity of siPlk1. The absorbance peak at 343 nm, assigned to the released 2-pyridinedithione, indicated that 3'-thiol-modified sense or antisense siPlk1 conjugated with PDP PE to form sense and antisense siPlk1-phospholipids. As shown in Fig. S1, after 2 h there is no change in the absorbance peak at 343 nm, indicating that the thiol exchange reaction was almost completed. The maximum absorbance observed was also consistent with the expected amount of 2-pyridinedithione released from this reaction [30]. Subsequently, the siPlk1-phospholipids conjugate was prepared by complementary hybridization between the sense and the antisense siPlk1-phospholipid conjugates with equal amounts. Comparing with naked siRNA (MW 13,300), the siPlk1-phospholipids conjugate showed a little retarded migration in the gel, due to slight higher molecular weight of siPlk1-phospholipids (MW 15,000) (Fig. S2).

The siPlk1-PCNPs were prepared and characterized by TEM, Cryo-TEM and CLSM to prove their hypothetical structures. As shown in Fig. 2A (a and b), the TEM and Cryo-TEM images indicated that the siPlk1-PCNPs had obvious core-shell structures with three layers. Comparing with blank NPs (Fig. 2A (c)), the siPlk1-PCNPs exhibited higher electron density at the middle layer, which were speculated that the siPlk1-phospholipids conjugates were in the middle position. In comparison with siPlk1-PCNPs, siPlk1 of the siPlk1-NCs (Fig. 2A (d)) nearly appeared in the outer layer of NPs, which suggested that the siPlk1-PCNPs had more stable and compact structures than siPlk1-NCs. To further confirm our speculation, the siPlk1-PCNPs (Fig. 2B) were formed in micrometer scales and observed under CLSM. The red fluorescence images in Fig. 2B (a) represented the DDAB and DSPE layer. Hoechst 33342, was used for staining the siRNA-phospholipids layer with blue fluorescence (Fig. 2B (b)). The overlap image in Fig. 2B (c) clearly showed that the siPlk1-phospholipids existed at the middle layer of siPlk1-PCNPs. These results indicated that the amphiphilic properties of siPlk1-phospholipids in the siPlk1-PCNPs and they can also encapsulate siPlk1 by electrostatic interaction, whereas siPlk1 in the siPlk1-NCs could only combine through electrostatic interaction, demonstrating siPlk1-PCNPs had more stable structures than siPlk1-NCs.

To evaluate siPlk1 binding abilities of the siPlk1-PCNPs and the siPlk1-NCs, gel electrophoresis and EtBr dye displacement assay were performed. The complete binding of siPlk1 in the siPlk1-PCNPs occurred at the weight ratio of NPs/siPlk1 around 24/1, leading to the absence of siPlk1 band on the agarose gel (Fig. 3A (a)) and decrease in the fluorescence of EtBr (Fig. 3B). Whereas the band of free siPlk1 of siPlk1-NCs disappeared at the weight ratio of NPs/siPlk1 around 72/1 (Fig. 3A (b)), and the fluorescence intensity decreased down to background level at the same weight ratio (Fig. 3B). Consequently, siPlk1-PCNPs with NPs/siPlk1 weight ratio of 24/1 and siPlk1-NCs with NPs/siPlk1 weight ratio of 72/1 were further used in the following investigations. Calculated from EtBr fluorescence data, siPlk1-NCs had siPlk1 loading efficiency of 1.26%, whereas siPlk1-PCNPs had 3.86%, which is three times loading efficiency compared with siPlk1-NCs, at the same quality of NPs and cationic lipids (Fig. 3C), and also higher than other reported lipid enveloped nanoparticles [31]. These results suggested that the siPlk1-phospholipids could drastically enhance the entrapment of siPlk1 in siPlk1-PCNPs, compared to siPlk1-NCs. This is likely attributed to the amphiphilic properties and negative charge with siRNA of siPlk1-phospholipids, which can self-assemble and combine to siPlk1-PCNPs with electrostatic interaction. However, free siPlk1 bound with siPlk1-NCs only through electrostatic interaction.

The size distributions and surface charge of blank NPs, siPlk1-NCs and siPlk1-PCNPs were tested by DLS assay. These results revealed that the size of blank NPs, siPlk1-NCs and siPlk1-PCNPs were 114.4, 126.1 and 139.2 nm with zeta potentials 37.0, 24.5 and 7.8 mV, respectively (Fig. 3D). The data indicated that these NPs could facilitate for siPlk1 delivery to solid tumors as the enhanced permeability and retention (EPR) effect in the tumor microenvironment [32]. Meanwhile, the size distributions and zeta potentials of siPlk1-PCNPs with different NPs/siRNA ratio (w/w) were studied.
by DLS assay. With increasing the NPs/siRNA ratio (w/w) of siPlk1-PCNPs, the size of siPlk1-PCNPs decreased and the zeta potentials of siPlk1-PCNPs increased (Fig. S4). The cytotoxicity of the blank NPs was evaluated by MTT assay against HeLa cells. As shown in Fig. S5, the cell viability was more than 80% of survived cells when the concentration of the blank NPs was up to 1000 µg/mL and the concentration of cationic lipids DDAB was up to 93.8 µg/mL, respectively, which illustrated that the cytotoxicity of blank NPs was fairly low. Previous studies have shown that lipid and PLGA have been widely used in genes and drugs delivery, because these two materials are approved by the Food and Drug Administration (FDA) and can be accepted in clinical application [20]. Therefore, lipids and PLGA were chosen as materials for building carriers, which had potential pharmaceutical applications. The stability of siPlk1-PCNPs and siPlk1-NPs was investigated in DMEM containing 10% FBS. As shown in Fig. 3D, for 12 h incubation the size of siPlk1-PCNPs slightly increased from 138.7 to 146.7 nm. However, siPlk1-NPs presented a dramatic size increasing from 126.7 to 187.5 nm after 12 h of incubation. Thus, this result suggested that siPlk1-PCNPs had better colloidal stability in FBS compared to siPlk1-NPs, which might be due to the stable and compact structure and lower positive surface charge of the siPlk1-PCNPs. These were consistent with previous reports that the relative neutral surface charge prevented NPs from protein adsorption and aggregation [20]. This finding is important because colloidal stability in serum for any NPs determines the successful delivery of drugs to target position as it prevents particle aggregation or embolism from circulatory system and prolongs the NPs residence time in the body [33].

Under reductive condition the disulfide bonds get cleaved and release free siPlk1 from siPlk1-phospholipids conjugates. To test the release free siPlk1 from siPlk1-PCNPs, the siPlk1-PCNPs were incubated in a physiologically relevant buffer (PBS) with 10 mM dithiothreitol (DTT), which was analogous to intracellular glutathione (GSH) concentration [34]. The free siPlk1 released from siPlk1-PCNPs was tested by Quant-iT™ RiboGreen RNA Reagent and Kit. As shown in Fig. 3E, about 100% siPlk1 was released from siPlk1-PCNPs over 3 days in PBS with 10 mM DTT and about 40% siPlk1 was released from siPlk1-PCNPs at pH 7.4 in PBS for 3 days. This stability over the given time frame is very important, as the siPlk1-PCNPs could lose small amounts of the loaded siPlk1 during the system circulation prior to entering into tumor. Meanwhile, the siPlk1-PCNPs could release more siPlk1 in intracellular environment.

The siPlk1-PCNPs can encapsulate hydrophobic DOX in PLGA core. From the Fig. 3E, we found that siPlk1-phospholipids envelo ped PLGA can retard the release of DOX in PBS. About 100% DOX was released from siPlk1-NPs/DOX, but only 45% DOX was released from siPlk1-PCNPs/DOX during 9 days. This is due to the siPlk1-phospholipids provided compact and stable layer of siPlk1-PCNPs/DOX, which obviously shortening the time of release DOX than siPlk1-NPs/DOX.
3.2. Gene silencing ability

We next assessed the gene silencing efficiency in HeLa cells. To knockdown Plk1 gene expression in the cytoplasm, NPs should efficiently get internalization into the cells and escape to cytoplasm [35,17]. Firstly, we evaluated the cell uptake as well as the intracellular fate of the siPlk1-PCNPs and siPlk1-NPs. DOX was used to track siPlk1-PCNPs and siPlk1-NPs by embedding DOX into siPlk1-PCNPs and siPlk1-NPs to form siPlk1-PCNPs/DOX and siPlk1-NPs/DOX. To explore the mechanism of siPlk1-PCNPs/DOX and siPlk1-NPs/DOX internalization, HeLa cells were preincubated with an endocytosis inhibitor (chlorpromazine, genistein, methyl-β-cyclodextrin (mβCD), wortmannin, or dynasore). Low temperature (4°C) treatment was used to arrest energy-dependent endocytosis [36]. Chlorpromazine was used to inhibit clathrin-mediated endocytosis (CME), which often leads to endosomal entrapment and lysosomal degradation of DNA and siRNA, thus reducing gene transfection unless the delivery carrier is able to escape endosomes. Genistein and mβCD were used to block caveolae uptake by inhibiting tyrosine kinase and depleting cholesterol, respectively. Wortmannin is a potent inhibitor of phosphatidyl inositol-3-phosphate, which was used to prohibit macropinocytic uptake [37]. As shown in Fig. 4A,
Fig. 4. The cellular uptake of siPlk1-PCNPs/DOX and siPlk1-NPs/DOX. A) Cell uptake level of siPlk1-PCNPs/DOX and siPlk1-NPs/DOX in HeLa cells in the presence of various endocytic inhibitors. B) Cellular uptake of siPlk1-PCNPs/DOX and siPlk1-NPs/DOX were analyzed by flow cytometry after 2 h incubation. siPlk1-PCNPs/DOX and siPlk1-NPs/DOX
siPlk1-PCNPs/DOX and siPlk1-NPs/DOX showed different internalization mechanisms and intracellular fate. For siPlk1-NPs/DOX, the cell uptake level was inhibited by ~63% at 4 °C, suggesting that most of siPlk1-NPs/DOX were internalized via energy-dependent processes; mCD and Chlorpromazine exerted slight inhibitory effect (~27% and 17%) while genistein, dynasore had not appreciable effect at all; ~39% inhibitory effect was observed for wortmannin, indicating that macropinocytosis was involved. Collectively, the data indicated that siPlk1-NPs/DOX entered into the cells mainly via energy-dependent endocysis and macropinocytosis. For siPlk1-PCNPs/DOX, ~68% reduction in the uptake level was observed at 4 °C. Genistein (~46%), mCD (~52%) and dynasore (~40%) inhibited the cell uptake process. Furthermore, the cell uptake level was decreased in the presence of dynasore, which inhibited both the clathrin- and caveolar-mediated pathways by inhibiting dynamins, further demonstrating the above observed results. Only small fraction of siPlk1-NPs/DOX and siPlk1-PCNPs/DOX entered into cells via CEM. Compared with siPlk1-NPs/DOX, siPlk1-PCNPs/DOX with low charges had a slightly higher rate of cell uptake (Fig. 4B). This is likely because that siPlk1-NPs/DOX and siPlk1-PCNPs/DOX had different ways to enter into the cells. The localization of NPs in cells was observed by staining endosomes and early lysosomes with Lysotracker™ Green. HeLa cells were incubated with siPlk1-PCNPs, which containing DHPE-Texas red for 2 h and 8 h, respectively. The CLSM analysis (Fig. 4C) showed that red spots were observed within the HeLa cells and siPlk1-PCNPs were mainly colocalized with the Lysotracker™ Green stained organelles after 2 h of incubation, also indicating that siPlk1-PCNPs can internalize into cells by endocytosis. Subsequently, to investigate whether siPlk1-PCNPs could efficiently escape from the endosomes/lysosome, siPlk1-PCNPs were incubated with HeLa cells for 8 h. As shown in Fig. 4C, the separation of the green and red fluorescence spots was more significant, suggesting that siPlk1-PCNPs could efficiently escape from the endosomes or early lysosomes to cytoplasm. The colocalization ratio of labeled endosomes/lysosome and siPlk1-PCNPs loading with DHPE-Texas Red (siPlk1-PCNPs/DHPE-Texas Red) was calculated according to equation by Leica LAS colocalization software [38].

\[
\text{Colocalization ratio} = \frac{\text{Colocalization area}}{\text{siPlk1} - \text{PCNPs}/\text{DHPE} - \text{Texas red}}
\]

From Fig. 4D, about 40% of siPlk1-PCNPs/DHPE-Texas red was colocalized with endosomes/lysosome, indicating that most of these NPs (about 60%) could escape from lysosome and release to the cytoplasm. Due to the conjugated phospholipids with siPlk1, there were no more places with siRNA to conjugate with fluorescent molecules. This result provided indirect proof that siPlk1 could escape from the endosomes or early lysosomes to cytoplasm. To further test whether the siPlk1 effectively escaped from endosomes or early lysosomes to knockdown the gene expression, the ability of down-regulating therapeutic target mRNA level by siPlk1 delivered by siPlk1-PCNPs and siPlk1-NPs was investigated by RT-PCR. As shown in Fig. 5A, siPlk1-PCNPs and siPlk1-NPs could significantly silence Plk1 gene expression in HeLa cells, leading to approximately 64% and 35.1% knockdown of Plk1 mRNA, respectively. Whereas, negative controls including treatments with PBS, blank NPs and nonsense siRNA-PCNPs showed no knockdown efficiency. Down-regulation of Plk1 mRNA expressions was subsequently accompanied by decreased Plk1 protein expression. To follow transfection abilities with siPlk1-PCNPs and siPlk1-NPs, Plk1 protein expression levels were detected by Western blot analysis. SiPlk1-PCNPs exhibited significantly enhanced silencing of Plk1 protein contained the same concentration of DOX (2 μg/mL). C) CLSM images of endosomal escape of siPlk1-PCNPs in HeLa cells for 2 h and 8 h of incubation. Bar = 10 μm. D) CLSM images of lysosomes, siPlk1-PCNPs/DHPE-Texas Red, and their overlay signals after incubating siPlk1-PCNPs/DHPE-Texas Red with HeLa cells for 8 h. siPlk1-PCNPs was prepared with DHPE-Texas Red. Lysosomes were stained with Lysotracker™ Green. In the overlay image, the signal of siPlk1-PCNPs/DHPE-Texas Red that were colocalized with lysosome was changed to white spots by Leica LAS Co-localization software. In the analysis image, part I, II and III indicated that signals of lysosomes, siPlk1-PCNPs/DHPE-Texas Red and their colocalization spots, respectively. The colocalization ratio of lysosomes and siPlk1-PCNPs/DHPE-Texas Red was calculated by Leica LAS Co-localization software. Bar = 25 μm.
Fig. 6. A) The cell apoptosis induced by different NPs was visualized by TUNEL assay in HeLa cells for 72 h. The cells with green fluorescence were defined as the apoptotic cells. B) The percentage of apoptotic cells were calculated according to (A). C) The antitumor activities of free siPlk1, free DOX, free siPlk1 + free DOX, nonsense siPlk1-PCNPs/DOX, siPlk1-PCNPs/DOX and siPlk1-NPs/DOX against HeLa cells for 72 h. Cells were treated with various NPs at a DOX concentration of 2 μg/mL, a siRNA concentration of 200 nM for free siPlk1, free siPlk1 + free DOX, nonsense siRNA-PCNPs/DOX and siPlk1-PCNPs/DOX and 67 nM with siPlk1-NPs/DOX. D) Examination of the combined effects of siPlk1 and DOX in HeLa cells. siRNA concentration of 200 nM for 72 h. Data were presented as a mean ± SD, n = 3, **p < 0.01.
expression compared to siPlk1-NPs (Fig. 5B). The blank NPs and nonsense siRNA-PCNPs did not knockdown Plk1 protein expression in HeLa cells. These results coincided with the previous data of RT-PCR that siPlk1 knockdown the gene expression in a dose-dependent manner [3].

3.3. Codelivery of siPlk1 and DOX using siPlk1-PCNPs

As shown in the previous design, the siPlk1-PCNPs can co-deliver siRNAs and hydrophobic anticancer drugs. Many studies had reported that both siPlk1 and DOX could inhibit cell proliferation through inducing cell apoptosis [18,19,39,40]. Plk1 functions in multiple phases of mitosis, and is over-expressed in HeLa tumor types. RNAi-mediated Plk1 depletion or inhibition of Plk1 activity with siPlk1 induced G2/M arrest and apoptosis in HeLa cells. DOX (cell-cycle nonspecific antineoplastic agent) acts as cytotoxic agents inducing cancer cell apoptosis during each cycle phase. Furthermore, a Plk1 inhibitor in combination with chemotherapy (cell-cycle nonspecific antineoplastic agent) could achieve complete response and impair tumor relapse in preclinical studies. In this study, we hypothesized that siPlk1 and DOX co-delivery could effectively inhibit the tumor growth. Through the above RT-PCR and Western blot analysis of siPlk1-PCNPs, it was proved that siPlk1-PCNPs had highest efficiency in knocking down the Plk1 protein expression level in HeLa cells. Next, the combined effect of siPlk1 and DOX by siPlk1-PCNPs was examined. We characterized the physicochemical properties of siPlk1-NPs/DOX and siPlk1-PCNPs/DOX, and found that the size of siPlk1-NPs/DOX (143.7 nm) and siPlk1-PCNPs/DOX (150.3 nm) during the DOX loading process was similar to the size of siPlk1-NPs and siPlk1-PCNPs. The encapsulation efficiency of DOX in siPlk1-NPs and siPlk1-PCNPs was similar 92.4% and 93.6%, and loading efficiency of DOX was 2.4% and 2.6%, respectively.

Herein, whether the co-delivery of siPlk1 and DOX by siPlk1-PCNPs could exert the combined effect in tumor cells apoptosis and inhibit tumor cells proliferation was examined. In order to evaluate the apoptosis in HeLa cells, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed. The number of TUNEL-positive cells (green fluorescence) was counted to get the percentage of apoptotic cells. As shown in Fig. 6A and B, the cells incubated with PBS and naked siPlk1 exhibited very few cells apoptosis. HeLa cells incubated with siPlk1 and DOX-loaded various NPs showed different apoptosis levels. The siPlk1-PCNPs/DOX induced 76.4% apoptosis cells, which was much higher than that of siPlk1-NPs/DOX (60.5%), nonsense siRNA-PCNPs/DOX (45.7%) and free siPlk1 + free DOX (27.7%), indicating the combined effect of co-delivery DOX and siPlk1. These results demonstrated that siPlk1 and DOX inhibited HeLa cells growth through inducing the apoptosis.

MTT assay was employed to assess the antitumor activities of these NPs in vitro. The MTT data showed that free siPlk1 had negligible cytotoxicity against HeLa cells both at 72 h. Whereas, the siPlk1-PCNPs/DOX exhibited the highest cytotoxic effect among all other NPs with cell viability of 8.8% at 72 h. HeLa cells treated with siPlk1-NPs/DOX had 21.9% viability, nonsense siRNA-PCNPs/DOX (36.6%) and free siPlk1 + free DOX had 45.2% at 72 h (Fig. 6C). SiPlk1 was found to effectively improve the cell cytotoxicity of DOX in vitro, as shown by 5-fold decrease in IC50 values from the nonsense siRNA-PCNPs/DOX control (IC50 = 1.05 μM) to the siPlk1-PCNPs/DOX (IC50 = 0.21 μM). The above results indicated that the siPlk1-PCNPs/DOX exerted the stronger combined effect than that of siPlk1-NPs/DOX, due to higher amount of siPlk1 embedded in NPs.

3.4. Tumor growth suppression in vivo

To reveal the potential of siPlk1-PCNPs/DOX as siPlk1 and DOX delivery system in vivo, we treated the tumor HeLa-bearing BALB/c nude mice with siPlk1-PCNPs/DOX. It was expected that siPlk1-PCNPs/DOX could enter into the tumor tissues by passive mechanisms, due to the nanosize of siPlk1-PCNPs/DOX. We used siPlk1-PCNPs to embed the hydrophobic DiR (absorption/emission maxima = 748/780 nm), which has the high transmission of infrared light through tissues as an in vivo tracer in living organisms, to observe whether siPlk1-PCNPs/DOX entry into the tumor tissues by the leakage of vessels. SiPlk1-PCNPs/DiR was injected via tail vein of mice, and was examined at 4 h after the intravenous injection by an in vivo imaging system. Fig. 6d showed that siPlk1-PCNPs/DiR effectively targeted in the tumor tissues for enhancing antitumor therapies. Due to DOX self-fluorescence, siPlk1-PCNPs/DOX and siPlk1-NPs/DOX were used to evaluate the tissue distribution. The tumor distributions of siPlk1-PCNPs/DOX, siPlk1-NPs/DOX and free DOX were observed 4 h after the intravenous injection in HeLa-bearing BALB/c nude mice. As shown in Fig. 7A, the DOX fluorescence was detected at the tumor in mice injected with siPlk1-PCNPs/DOX, siPlk1-NPs/DOX and free DOX, demonstrating the accumulation of siPlk1-PCNPs/DOX and siPlk1-NPs/DOX in tumor tissues by EPR effect. However, the strongest DOX fluorescence was observed in the tumor in case of siPlk1-PCNPs/DOX, indicating that more accumulation of siPlk1-PCNPs/DOX than siPlk1-NPs/DOX in tumor tissues. The tumor distribution of siPlk1-PCNPs/DOX, siPlk1-NPs/DOX and free DOX was also confirmed by frozen tumor tissue section observed by CLSM (Fig. S7). The HeLa-bearing mice injected with siPlk1-PCNPs/DOX and siPlk1-NPs/DOX had more DOX fluorescence in tumor tissues, indicating siPlk1-PCNPs/DOX and siPlk1-NPs/DOX can deliver drugs to tumors.

The tissue distribution of siPlk1-PCNPs/DOX and siPlk1-NPs/DOX was examined 24 h after the intravenous injection in ICR mice. The organs of the mice were collected and observed by an in vivo imaging system. A strong signal for both siPlk1-PCNPs/DOX and siPlk1-NPs/DOX was observed in the kidney, reflecting renal clearance of NPs. A higher intensity of siPlk1-NPs/DOX in the liver was observed than siPlk1-PCNPs/DOX, implicating that the liver readily captured siPlk1-NPs/DOX, which released DOX during blood circulation (Fig. 7B and C). The plasma DOX concentration was measured as a function of time post-injection. To measure the retention time of DOX in blood via NPs delivery, free DOX, siPlk1-PCNPs/DOX and siPlk1-NPs/DOX were injected to mice with the same concentration of 4 mg/kg DOX. One- and non-compartment pharmacokinetic model was used to fit the plasma concentration--time profiles (Fig. 7D). The siPlk1-PCNPs/DOX delivery extended the plasma half-time of DOX to ~10.4 h as compared with free DOX (~0.21 h). The siPlk1-NPs/DOX delivery extended the plasma half-time of DOX to ~6.6 h. Together, these findings demonstrated that siPlk1-PCNPs/DOX are able to successfully deliver DOX and siPlk1 to target tumor in vivo and can extensively prolong the retention time of DOX in blood. It is speculated that the low surface charge and the compact and stable structure of siPlk1-PCNPs/DOX prevented nonspecific protein adsorption and aggregation of siPlk1-PCNPs/DOX in vivo. Thus, more siPlk1-PCNPs/DOX accumulated in the tumor through the EPR effect and siPlk1-PCNPs/DOX had long retention time of DOX. Long-circulating siPlk1-PCNPs/DOX provided more chance for siPlk1-PCNPs/DOX in tumor sites.

Next, we examined the antitumor growth effect of siPlk1-PCNPs/DOX after accumulation in the tumor site. Free siPlk1, free siPlk1 + free DOX, nonsense siRNA-PCNPs/DOX, siPlk1-NPs/DOX and siPlk1-PCNPs/DOX with the same concentration of siRNA 1 mg/kg and free DOX, free siPlk1 + free DOX, siPlk1-NPs/DOX, nonsense
siRNA-PCNPs/DOX and siPlk1-PCNPs/DOX with the same DOX dose of 2 mg/kg were intravenously injected at days 0, 2, 4 and 6. As shown in Fig. 8A, complete tumor regression was observed in siPlk1-PCNPs/DOX group, which inhibited the average tumor volume by 5.5-fold compared to the PBS control. Partial tumor regression was seen in siPlk1-NPs/DOX group, which suppressed the tumor volume by 2.3-fold, compared to the PBS control. From this result, we found that high loading efficiency of siPlk1 enhanced antitumor therapy through silencing of Plk1 gene expression. The tumor continued to grow, and no obviously inhibition of tumor growth was observed when HeLa-bearing mice injected free DOX, free siPlk1 and free siPlk1 + free DOX. This is likely due to the low doses of DOX (2 mg/kg), as compared with the dose of 5 ~ 10 mg/kg as used for treatment tumors in previous reports [41,42]. After delivery into the bloodstream, the free siRNA molecules were subjected to rapid clearance from the blood through liver accumulation and renal filtration, therefore free siPlk1 did not obviously decrease the average tumor volume [43]. Moreover, compared with free DOX, nonsense siRNA-PCNPs/DOX, siPlk1-NPs/DOX and siPlk1-PCNPs/DOX had higher antitumor activity, due to nonsense siRNA-PCNPs/DOX, siPlk1-NPs/DOX and siPlk1-PCNPs/DOX delivered more DOX to tumor than free DOX, which was confirmed by distribution of DOX fluorescence in tumor tissue. Despite the low DOX dosage, siPlk1-NPs/DOX and siPlk1-PCNPs/DOX demonstrated strong antitumor activity, suggesting that the combination of DOX with siPlk1 enhanced the inhibition of tumor growth. What’s more, siPlk1-PCNPs/DOX had the strongest inhibition of tumor growth, because of siPlk1-PCNPs/DOX with high siPlk1 amount, long circulating time in blood and more accumulation in the tumor. As shown in Fig. 8B, the images of tumor also confirmed that siPlk1-PCNPs/DOX displayed higher efficacy in tumor growth inhibition.

To demonstrate that inhibited tumor growth by siPlk1-PCNPs/DOX was related to Plk1 downregulation in tumor cells, the tumors were excised 24 h after the last injection. Plk1 mRNA expression was analyzed by RT-PCR. Xenografts from mice treated by siPlk1-NPs/DOX and siPlk1-PCNPs/DOX containing siPlk1 showed reduced Plk1 mRNA levels (~60% and 30% of the PBS control), respectively. Based on the RT-PCR data (Fig. 8C), HeLa-bearing mice injected with siPlk1-PCNPs/DOX showed the lower level of Plk1 mRNA (~30% of the PBS control) than mice injected with siPlk1-NPs/DOX (~60% of the PBS control). Meanwhile, free siPlk1, free siPlk1 + free DOX and nonsense siPlk1-PCNPs/DOX injected mice did not regulate down the Plk1 mRNA level. Tumoral Plk1 protein expression was analyzed by Western blot analyses. Western blot analyses of Plk1 protein levels in tumor tissues (Fig. 8D) revealed a significant reduction in Plk1 protein levels when the mice were treated with siPlk1-PCNPs/DOX. In contrast, there was less decrease in Plk1 protein levels after treatments with siPlk1-NPs/DOX, when compared with the treatment with the PBS. This result demonstrates that the NPs embedded lower dose of the siPlk1 had fewer effects on silencing gene expression, which coincided with the previous report that siRNA knockdown the gene expression in dose-dependent manner [3].

DOX and siPlk1 have been proved to inhibit tumor growth by inducing cell apoptosis. To examine whether cell apoptosis was induced the decrease of the tumor volume, the tumor tissues were
collected for TUNEL analyses 24 h after the last injection. The combined therapy significantly increased TUNEL-positive tumoral cells, compared with free siPlk1, free DOX, free siPlk1 + free DOX and nonsense siRNA-PCNPs/DOX treatment. Notably, siPlk1-PCNPs/DOX achieved the highest cell apoptosis up to 100% and remarkably decreased the percentage of proliferating tumor cells in the studied tumor tissue section (Fig. 8E). These data indicated that siPlk1-PCNPs/DOX could enhance efficiency of treatments tumor in inducing apoptosis and prohibit the proliferation of tumor cells.

4. Conclusions

In summary, the approach of chemical conjugation of siPlk1 with phospholipids effectively increases the loading efficiency of siPlk1. With the unique properties of siPlk1-phospholipids, siPlk1-phospholipids enveloped NPs (siPlk1-PCNPs) were constructed as carriers for co-delivery of siPlk1 and DOX in HeLa cells or HeLa-bearing mice by a single-step nanoprecipitation method. Compared with siPlk1-NPs, the siPlk1-PCNPs had superior
characteristic siPlk1 loading capacity using less amounts of cationic materials. Meanwhile, siPlk1-PCNPs/DOX could exhibit significantly combined effect to induce tumor apoptosis and inhibit the tumor growth. The hypothetical mechanism of suppressing tumor growth by combining siPlk1 with DOX (siPlk1-PCNPs/DOX) in combined effects was shown in Fig. 9. The hybrid NPs were passively targeted to cancer cells through the EPR effect (step 1), and internalized into cells by endocytosis (step 2). After escaping from the endosomes/lysosome (step 3), the siPlk1-PCNPs entered into cytoplasm, which contained high GSH concentration. The nanoparticles released monomeric siPlk1 to down-regulate Plk1 gene expression (step 4), and finally released free DOX to enter into the nucleus with the degradation of PLGA (step 5) to perform combined effects for cancer treatment. Our results suggest that the chemically conjugated siPlk1-phospholipids enveloped hybrid nanoparticles (siPlk1-PCNPs) can be potentially applied as a safe and efficient gene delivery carrier and thus an approach is constructed for enhanced gene therapy in cancer treatment.

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grants NO. 21304099, 51203162, 51103159, 51373177), the National High Technology Research and Development Program (Grants NO. 2014AA020708, 2012AA022703, 2012AA020804), Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201253, YZ201313), Open Funding Project of the National Key Laboratory of Biochemical Engineering (Grant No. Y22504A169), “Strategic Priority Research Program” of the Chinese Academy of Sciences, Grant No. XDA09030301-3.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.biomaterials.2014.04.033.

References

Lee SH, Chung BH, Park TG, Nam YS, Mok H. Small-interfering RNA (siRNA)-
based functional micro- and nanostructures for efficient and selective gene

complex stability and gene silencing efficiency with a siRNA-grafted polymer

glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in

Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP. Lipid
modiﬁed triblock PAMAM-based nanocarriers for siRNA drug co-delivery.

Lee SY, Kim S, Tyler JY, Park K, Cheng JX. Blood-stable, tumor-adaptable di-
sulﬁde bonded mPEG-(Cy5)-PDLLA micelles for chemotherapy. Biomaterials