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Glioblastoma is the most common and devastating primary brain tumor in adults. The clinical treatments of glioblastoma
are generally focus on surgical excision, chemotherapy and radiotherapy, while the prognosis remains grim. With the
adequate understanding of the unique immunological microenvironment in the central nervous system (CNS) and CNS
tumors, immune microenvironment modulation becomes a promising treatment modality in glioma. Studies using RNA
interference (RNAi) technology to modulate the immune microenvironment are under an active investigation. Using those
therapeutic strategies directly or indirectly react with tumor cells, antigen processing cells (APCs, including microglia and
dendritic cells (DCs)) and immune cells (such as T cells and natural killer cells (NK cells)) has been extensively studied.
Here, we review the current advances in immune microenvironment modulation for glioblastoma with RNAi approach.
We also investigate how the factors, associated with immunosuppression, to combat with glioblastoma, and discuss
the deficiency for this anti-glioblastoma strategy. From these, we expect to provide a guidance for the future develop-
ment of RNAi-based immunomodulation strategy for glioblastoma and establish optimized antitumor therapy for clinical
treatments.
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INTRODUCTION
Glioblastoma, one of the most common and malignant
primary tumor that originate from glial cells within the
central nervous system (CNS), are among the most fatal
cancers in human.1–4 The characteristics of glioblastoma
are cellular heterogeneity, fast and extensive infiltration.5–9

The median survival time for patients diagnosed with
the tumors in this category is only 12–18 months.10–13

The current therapy regimen consists of maximal surgical
resection combined with chemotherapy and/or radiother-
apy, and they have limited effects on brain tumor progres-
sion, recurrence rate or clinical outcome.14–23 A complex
mechanism is involved in the development of glioblas-
toma, which includes the rapid proliferation of tumor cells
along with their ability to evade the immune response
mainly due to tumor infiltration of regulatory T cells
(CD4+CD25+Foxp3+, Tregs).24–27
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The quite limited efficiency of therapeutics is caused by
two major reason:
(i) the disability of most chemotherapeutic agents to cross
the blood-brain barrier (BBB),28–32 and
(ii) the suppressive immune microenvironment.33–35

On the one hand, the biological barrier BBB con-
sists of a huge impermeable cellular barrier of capillary
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endothelium cells connected by tight junctions.36–39 It sig-
nificantly protects the CNS from the penetration of toxins
and unknown substances from blood and maintain brain
homeostasis.40–42 While the presence of BBB is a great
challenge for therapeutic molecules to overcome in order
to reach the target site.43–48 As a consequence, low phar-
macological concentrations of therapeutic agents in target
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site within brain tumor induce an insufficient inhibition
of tumor progression.47�49 On the other hand, glioma cells
secrete various cytokines, chemokines and growth factors
that modulate the local infiltration of various immune cells
and the proliferation of T regulatory cells.50–54

Although a variety of strategy to treat glioblastoma have
been investigated in last decades, the median survival rate
of patients remains at 14.6 months after diagnosis.55�56

The characteristics of glioma are rapid growth, highly
infiltrative in nature, and suppressive immune microen-
vironment, which make glioblastoma particularly diffi-
cult to treat.57–62 Those specific characters motivate brain
tumors to establish a self-promoting and mutually self-
reinforcing tumor microenvironment (TME) that promotes
tumor progression.63–65 Herein, innovative and efficient
therapeutic strategies against the devastating and rapidly
fatal disease are urgently needed.

Development of RNA interference (RNAi) technology
has opened up new perspectives in human disease treat-
ment, especially glioblastoma.66–72 The strategy was based
on an endogenous pathway that enabled regulation of
gene expression, which was identified by Craig Mello and
Andrew Fire in 1998.73�74 In particular, the specific genes
of interested were diced from longer RNA transcripts
by the RNase-III-like enzyme Dicer, and then assembled
into a complex called the RNA-induced silencing com-
plex (RISC), which could direct RNA cleavage, mediate
translational repression or induce chromatin modifications
(Fig. 1). Hence, researches using RNAi technology to treat
glioblastoma as a promising approach have been reported
recently.

Tumor microenvironment (TME) is the formidable chal-
lenge in advancing the treatment of glioblastoma.53�75–77

Indeed, the tumor microenvironment is a complicated
system, which consists various distinct cell types, mul-
tiple signaling pathways, cytokines and extracellular
matrix components (EMC).78–81 The matrix components
of TME interact with tumor cells, such as neoplas-
tic cells interact with fibroblasts, vascular endothelial
cells, a variety of infiltrating immune cells (including
a network of cytokines and chemokines released by
these cells), thus promote tumor formation, growth and

Figure 1. The mechanism of RNAi process within cell.
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Figure 2. Model of immunosuppressive microenvironment in
brain tumors.

metastasis.64�81–86 Besides, numerous cytokines, such as
interleukins,87–89 interferons,90�91 tumor necrosis factors
and so on,92–95 influence the progression of malignant
glioma (Fig. 2). Also, those cytokines have an effect
on the immunologic response against gliomas, displaying
pro-inflammatory or immunosuppressive activities.96 The
dynamic interplay among those aforementioned factors
are intricately coordinates to form an immunosuppressive
microenvironment.97–99 Clarifying the details of immuno-
suppressive environment of glioma requires consideration
not only the intrinsic properties of tumor cells, but also
how they interact with those distinct cell types, includ-
ing antigen processing cells, dendritic cells, microglia,
T cells and other cells. Recently, studies using used RNAi
to modulate the immunosuppressive microenvironment are
now widely investigated. Here, in this review, we will
focus on the application of RNAi technology in modula-
tion of immune microenvironment of glioblastoma, clarify-
ing the mechanism of immunosuppression toward different
cells, especially between glioma themselves and various
immune cells. The recent combinatorial approaches are
also discussed from these description. From this review,
we expect to provide a future direction of therapeutics of
brain tumors for clinical application.

RNAi TECHNOLOGY AND ITS APPLICATION
IN BRAIN TUMOR IMMUNE REGULATIONS
A growing number of researches have demonstrated the
potential of RNAi technology to provide immune regula-
tions in glioblastoma treatment. With a deeper understand-
ing of the process of development and progression as well
as basic biology of the devastating cancer, two primary
impediments for efficient treatment are listed: the immuno-
suppressive effects derived from
(i) glioblastoma (the aberrant secreted factors and the sur-
face immunosuppressive molecules)100–103 and

(ii) immune associated cell lines (including glioma-
associated microglia/macrophages,104–107 antigen present-
ing cells, leukocytes, natural killer cells108–110�.

Each of them will be discussed as followings.

RNAi Toward Glioblastoma
The aberrant expression factors that induce immuno-
suppressive effects are of great importance in glioblas-
toma therapeutics.53�111–113 A large number of researches
have demonstrated that immunosuppressive factors (such
as transforming growth factor-� (TGF-��,114�115 ganglio-
sides (GANGs),116–120 interleukin-10 (IL-10)121–123 and
prostaglandin E2 (PGE-2)124–127 and so on,128–132� are
actively expressed by glioma. Those soluble factors have
a sophisticated and multiple effect on immunosuppressive
microenvironment.
TGF-�, for instance, is a multifunctional polypep-

tide cytokine, which is considered to be one of the
major factors responsible for glioma tumorigenesis and
TME regulation.133–135 The dysregulation of TGF-� is
involved with various processes, such as fast cell growth,
cell survival, differentiation, invasion into normal brain
parenchyma and immunosuppressive activity (immune
dysfunction).136–139 RNA interference targeting TGF-� to
decrease expression of the activating immune receptor
of immune cells and inhibit glioma cells migration and
invasiveness as well as abrogate tumorigenicity in vivo
was studied by Weller and colleagues. Up-regulation of
NKG2D, an immune receptor in CD8+ T and NK cells,
through a novel therapeutic approach to silence TGF-�
gene expression, made glioma cells more efficiently rec-
ognized by innate immune recognition via induced self-
danger signals disinhibited transcription.140 In 2013, Hau
and colleagues reported that modulated the lactate produc-
tion by transfecting HTZ-349 glioma cells with siLDH-A
(siRNA for lactate dehydrogenase-A) could suppress the
level of TGF-�2, which might modulate the migration of
glioma cells (Fig. 3).141 Besides, the immune suppressive
component gangliosides could affect lymphocyte respon-
siveness as well as APCs and T cell functions.142 Biswas
and colleagues reported that GBM-derived gangliosides
could induce apoptosis of T cells through involvement of
the TGF receptor and activation of the caspase cascade.120

Treatment toward glioblastoma by using RNAi tech-
nology could induce apoptosis and regulate the aberrant
expression factors, thus improving the immunosuppressive
microenvironment. However, there are two aspects need to
consider for further clinical application. On the one hand,
the efficiency of the treatment is not enough for further
application due to several reasons, including lack of spe-
cific gene targets, the poor selectivity and low efficiency of
gene silencing. On the other hand, the immune responses
elicited by the host suppress the effector T cell, eliminate
the antitumor immunity. Herein, not only the glioma cells,
but the other cells in TME should be take into account
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Figure 3. Knockdown of THBS-1 down-regulates TGF-�2 at the protein level (a). siTHBS-1 significantly inhibit THBS-1 at the
mRNA level (A, p< 0�05∗). Western Blot analysis showed markedly reduced THBS-1 protein levels (B). In TGF-�2 ELISAs siTHBS-
1 causes significant down-regulation of TGF-�2 protein in HTZ-349 glioma cells (C, p < 0�05∗). Decreased levels of TGF-�2
protein after LDH-A knockdown (D, mock/siLDH-A p< 0�05∗) can be rescued by addition of increasing doses of synthetic THBS-1
protein. Lactic acid and sodium lactate fail to significantly induce TGF-�2 expression after transfection with siTHBS-1 (E, p <

0�05∗). Glioma cell migration is mediated by THBS-1 and TGF-�2 (b). Boyden Chamber assays of HTZ-349 and U87 glioma cells
24 hours after treatment with 0.1 �M siLDH-A show a significant inhibition of migration (A, U87 p < 0�001∗∗∗; HTZ-349 p < 0�01∗∗).
Scratch Migration assays verified these results (B–F). Inhibition of LDH-A by siRNA yields similar results (B) as in the Boyden
chamber assay. THBS-1 knockdown also diminishes HTZ-349 and U87 migration (C, HTZ-349 p< 0�01∗∗; U87 p< 0�001∗∗∗). Addition
of 6 �g/ml recombinant THBS-1 (D) and 20 ng/ml TGF-�2 (E, F) can fully rescue impaired migration after LDH-A knockdown.
Reprinted with permission from [141], C. Seliger, et al., Lactate-modulated induction of THBS-1 activates transforming growth
factor (TGF)-beta 2 and migration of glioma cells in vitro. PloS One 8, 70 (2013). © 2013, Public Library of Science.
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for the exploitation of potential therapeutic strategies for
glioblastoma therapy.

RNAi Toward Immune-Related Cells
The central nervous system (CNS) has traditionally been
believed as immunologically privileged, which derived
from
(i) a paucity of native antigen presenting cells (APCs) in
the CNS;
(ii) limitations of leukocyte entry imposed by the blood-
brain barrier (BBB);
(iii) absence of native T cells in the CNS and
(iv) the observation that tissues engrafted into the CNS
are rejected more slowly than those grafted to other sites,
implying that the immune system is inactive in the CNS
and fails to interact effectively with the systemic immune
system.143–145

Now, much more research confirms that the CNS is
immunocompetent than immune-privileged and interacts
dynamically with the systemic immune system.146�147

Researches focus on immune related-cells to modulate
the immune microenvironment of glioma have widely
reported.

Myeloid Cells
The high infiltration rate of tumor-associated-myeloid cells
(TAMs) including microglial cells and tumor-associated
macrophages that accumulate in the tumor mass is consid-
ered as a striking feature of glioblastoma.148–150 Of note,
it is now identified that the glioblastoma tumors are noto-
riously immunosuppressive and can manipulate myeloid
cells to support tumor progression. To be specifically,
those pro-tumorigenic effects of tumor-associated myeloid
cells promote angiogenesis as well as tumor cell inva-
sion, proliferation as well as survival.151 It is critical to
destroy tumor cells by presenting tumor-associated anti-
gens (TAA) to immune system thereby generate tumor-
specific immunity.152–155 Among this process, APCs play a
key role in harnessing the immune system to fight glioblas-
toma. As reported, microglia (MG),156–159 macrophages
(MP)160–163 and dendritic cells164–166 acted as powerful
immune cells in the CNS.
Microglia (MG) is the resident immune cells of the

CNS that responses to neuroinflammation by secreting
proinflammatory cytokines as well as producing phago-
cytosing cell debris and pathogens.167–169 The accumula-
tion of MG and MP, which have been demonstrated in
a number of CNS diseases, processes infection, trauma
and neoplasia.170 Kaminska et al. had shown that using
plasmid-transcribed small hairpin RNAs (shRNAs) could
reduce the level of TGF-� type II receptor (T�IIR) mRNA
by 30%∼67% in cells expressing specific shRNA. And
siRNA-mediated knockdown of T�RII expression abro-
gated glioma growth in nude mice (Fig. 4). All those

results indicated a critical role played by microglia-derived
TGF-� in regulating tumor-host interactions.171

Recently, it had been widely shown that the activated
microglia exhibited an immunosuppressive M2 pheno-
types, which could promote the growth of gliomas. Eyu-
poglu and co-workers demonstrated that the inhibition
of MIF (migration inhibitory factor, which results in a
M2 shift of microglial cells) signaling through siRNA-
mediated knockdown, could efficiently abrogate the tumor
escape mechanism and foster antitumor activity (Fig. 5).172

Those studies indicates that it is a viable approach to
modulate the TME of glioma through shifting microglial
cells from M2 toward M1 phenotypes thereby augment the
treatment effect (Fig. 6).172

The antigen presentation cells, such as dendritic cells
(DC), have also been confirmed among immune cell infil-
trates in CNS tumors, and can modulate the immunity
of host body.173–175 To achieve proper immune responses
by host for tumor treatments, antigen presentation by
dendritic cells (DCs) is essential.176–182 DCs can recog-
nize and capture antigen in their immature state and
then migrate to lymphoid organs and present processed
peptides.183–186 Kim and co-workers reported that down-
regulation of PTEN (phosphatase and tensin homologue, a
central negative regulator of the PI3K/AKT signal trans-
duction cascade) in DCs resulted in an increase of in vitro
T cell activation activity and in vivo migration to a drain-
ing lymph node.187 Yu et al. found that transfection of
DC with IL-10-specific double strands of small inter-
ference RNA (siRNA) could significantly enhance allo-
geneic T cell proliferation and promoted Th1 responses by
increasing IFN-� and decreasing IL-4 production. These
findings collectively indicates the potential of using IL-10
siRNA transfected antigen-presenting cells for a novel
immunotherapeutic strategy to elicit Th1 response.188 In
2015, Kim and co-workers reported that the siRNA
cocktail-mediated strategy by co-targeting immunosup-
pressive molecule, interleukin 10 receptor (siIL-10RA) and
transforming growth factor-� receptor (siTGF-�R) on den-
dritic cells, could generate strong tumor antigen-specific
CD8+ T cell immunity (Fig. 7).189

Astrocytes
As previous reported, astrocytes form gap junctions with
glioma cells.190–194 The major connexin 43 (Cx43), which
is expressed in both astrocytes and glioma cells, is specif-
ically upregulated in the reactive astrocytes surrounding
glioma, indicating that the interaction between glioma
cells and surrounding astrocytes at the tumor margins
are closely involved in glioma invasion (Fig. 8).195–198

By manipulating gap junctions with a gap junction
inhibitor, siRNAs, and a dominant negative connexin
mutant, we showed that functional glioma-glioma gap
junctions suppress glioma invasion while glioma-astrocyte
and astrocyte-astrocyte gap junctions promote it in an
in vitro transwell invasion assay.191
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Figure 4. TGF-�-induced invasiveness of T98G glioblastoma cells is reduced by shRNA against T�RII. (a) T98G cells trans-
fected with pST1119 or pSTNeg plasmids were detached by trypsinization 24 h after transfection, collected by centrifugation
and counted. Equal number of cells was seeded in 24-well transwell coated with the Growth Factor Reduced Matrigel Matrix and
cultured in DMEM/2% FBS in the presence or absence of 5 ng/ml TGF-�1 for 24 h. The cells invading through Matrigel Matrix
were fixed in ethanol, stained with DAPI and counted using a fluorescent microscope. Fluorescent images of stained cell nuclei
from a representative experiment are shown. (b) Bar graphs show the number of invading cells among pST1119 or pSTNeg-
transfected cells in the absence or presence of TGF-�1 (5 ng/ml). A statistically significant increase of Matrigel invading cells was
observed after TGF-� treatment in pSTNeg-transfected cells (∗P < 0�05 when compared to untreated cells). Data are presented as
mean counts of cells in the entire microscopic field from duplicate wells in the representative experiment. Similar results were
observed in three independent experiments. DAPI, 4′,6-diamidino-2-phenylindole, dihydrochloride; DMEM, Dulbecco’s modified
essential medium; FBS, fetal bovine serum; TGF-�, transforming growth factor-�; T�aRII, TGF-� type II receptor; shRNA, small
hairpin RNA. Reprinted with permission from [171], A. Wesolowska, et al., Microglia-derived TGF-beta as an important regula-
tor of glioblastoma invasion—An inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor.
Oncogene 27, 918 (2008). © 2008, Nature Publishing Group.

T Lymphocytes
T lymphocytes (CD3+� fall into two major categories:
CD4+ T helper (Th) cells and CD8+ cytotoxic T lym-
phocytes (CTLs) in addition to Tregs.199–202 It is generally
believed that high levels of CD8+ CTLs are associated
with a greater anti-tumor activity, while high levels of
Tregs cells are regarded as being related to promote tumor

progression.203�204 The induction and/or maintenance of
immunosuppression in glioblastoma is partly due to the
infiltration and accumulation of the highly immunosup-
pressive regulatory T cells (Treg).52�63�205–207

Glioma progression depends on the rapid prolifera-
tion of tumor cells accompanied by an acute immuno-
suppressive environment. Lesniak et al. reported that by

J. Biomed. Nanotechnol. 13, 1–20, 2017 7
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Figure 5. Glioma derived MIF activates microglial CD74. (a) Brains of wild-type glioma implanted (control) and MIF knockdown
implanted gliomas (siMIF) were cryo-sectioned and analyzed for glioma growth and microglia infiltration. Upper row shows wild-
type glioma expansion (green), microglial distribution (red) and nuclei staining (blue). Lower panel shows microglial distribution
in gliomas with siRNA-silenced MIF. Scale bar, 3 mm. (b) Quantification of microglial cells in peritumoral region (PT), and tumor
bulk (T) in wild-type gliomas (black columns) and MIF knocked down gliomas (white columns) with n = 4. (c) Human brain
tissues were cryo-sectioned and analyzed for microglial distribution. Human microglial cells are accumulated in peritumoral
regions and CD74+in glioblastoma affected brain tissue. Upper panel shows representative image of astroglial distribution (blue,
GFAP), microglial cells (red, IB4) and CD74 expression (green) in human brain tissue (nonmalignant brain tissue, control). Right
panel gives merged images of each row. Microglial cells (red, IB4+) are accumulated in peritumoral regions and co-localized
with CD74 (green) in human brains diagnosed for glioblastoma (GBM, revealed by GFAP immunostaining, blue). Lower panel,
higher magnification of CD74 (green) positive microglial cells (IB4, red). Scale bar in middle column represents 70 �m and in
lower column 5 �m. (d) Expression of CD74 in primary murine, human and BV2 microglia was analyzed by quantitative RT–
PCR. (e) Expression of CD74 in BV2 microglial cells (control) and BV2 microglial cells with siRNA-mediated CD74 knockdown
(siCD74) revealed by representative immunoblotting. �-Actin serves as a loading control. (f) Microglial proliferation is not affected,
(g) whereas siRNA-mediated CD74 silencing in microglial cells alleviates migration. The experiments were repeated three times
with n = 12. Reprinted with permission from [172], A. Ghoochani, et al., MIF-CD74 signaling impedes microglial M1 polarization
and facilitates brain tumorigenesis. Oncogene 35, 1 (2016). © 2016, Nature Publishing Group.
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Figure 6. MIF shifts microglia into a M2 phenotype. (a) Analysis of M1 parameters in co-cultivated BV2 microglia cells with
genetically modified GL261 glioma cells (n = 3). Co-cultures contain a semi-permeable membrane, which separates both cell
entities. After 20 h co-culture BV2 microglia were analyzed for expression of M1 markers by quantitative RT-PCR. Almost all M1
parameters significantly increase in their expression in BV2 microglia after co-culture with MIF over-secreting GL261 glioma cells,
whereas siRNA-silenced GL261 glioma cells do not. (b) M2 markers in primary murine microglia were analyzed by quantitative
RT–PCR after rMIF treatment (n = 3). 20 h of rMIF treatment significantly increases expression of M2 parameters (that is, CD204,
TGF-�, IL-10 and Arg-1). (c) Analysis of M2 parameters in co-cultivated BV2 microglia cells with genetically modified GL261
glioma cells (n = 3). Co-cultures contain a semi-permeable membrane, which separates both cell entities. After 20 h co-culture
BV2 microglia were analyzed for expression of M2 markers by quantitative RT–PCR. M2 parameters significantly increase in
their expression in BV2 microglia after co-culture with MIF over-secreting GL261 glioma cells, whereas siRNA-silenced GL261
glioma cells do not. (d) Analysis of microglial shift in vivo. Brain sections of GL261 (red) implanted mice were analyzed for
expression of the M1 and M2 markers (yellow) CD86 and Arg-1. Nuclei were stained by DAPI (blue). Total microglia staining was
performed by Iba-1 staining (green). Left column, CD86 as a representative marker for M1 polarization was dramatically increased
in MIF-silenced gliomas compared with wild-type MIF-expressing glioma cells. Right column, Arg-1 as a representative marker
for M2 polarization was conversely decreased in MIF silenced gliomas compared with wild-type MIF-expressing gliomas. Scale
bar, 20 �m. (e) Quantitative analysis of CD86 (black) and Arg-1 (white) staining through measurement of fluorescence intensities.
Reprinted with permission from [172], A. Ghoochani, et al., MIF-CD74 signaling impedes microglial M1 polarization and facilitates
brain tumorigenesis. Oncogene 35, 1 (2016). © 2016, Nature Publishing Group.

J. Biomed. Nanotechnol. 13, 1–20, 2017 9
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Figure 7. Vaccination with dendritic cells (DCs) transfected with various small interfering RNA (siRNA) increases the number
of E7-specific CD8+ T cells. (a) Intracellular cytokine staining and flow cytometry analysis to determine the number of interferon
(IFN)-�-producing E7-specific CD8+ T cells in mice after immunization with E7 peptide-pulsed DCs transfected with various
siRNA constructs. Mice (five per group) were vaccinated twice with E7 peptide-pulsed DCs transfected with siRNA targeting
green fluorescent protein (GFP), phosphatase and tensin homologue deleted on chromosome 10 (PTEN), Bcl-2-like protein 11
(BIM) interleukin (IL)-10RA, transforming growth factor (TGF)-�R, IL-10RA1PTEN, IL-10RA1BIM or IL-10RA1TGF-�R. There was a
1-week interval between injections of the transfected DCs for the purpose of vaccination. Splenocytes were harvested 1 week
after the last vaccination, stained for CD8+ and IFN-�, and analysed by flow cytometry to detect activated E7-specific CD8+ T
cells. Representative flow cytometry data for splenocytes harvested from the vaccinated mice and stimulated with E7 aa49-57
peptide or without peptide stimulation. The naive group has non-transfected DCs without E7 peptide pulsing, while the control
group has siGFP transfected DC without E7 peptide pulsing. (b) The bar graph indicates the number of IFN-�-expressing E7-
specific CD8+ T cells per 3×105 splenocytes from vaccinated mice (mean 6 standard deviation). The data presented in this figure
are representative of two independent experiments. Reprinted with permission from [189], Y. H. Ahn, et al., The siRNA cocktail
targeting interleukin 10 receptor and transforming growth factor-receptor on dendritic cells potentiates tumour antigen-specific
CD8+ T cell immunity. Clin. Exp. Immunol. 181, 164 (2015). © 2015, Wiley-Blackwell.

using short hairpin RNA to silencing of gene expres-
sion, the expression of fibronectin in glioma cells could
be inhibited, and cell proliferation delayed in vitro.208 In
animal model, the level of FoxP3 expression by CD4+

T cells in GL261-FnKD-implanted brains at 14th day was
almost 2.2-fold lower than that in GL261-VC tumors.
After 21 days, the difference was increased to almost
2.6-fold with 63.4% of CD4+ T cells expressing FoxP3
in GL261-VC tumors, whereas 24.8% CD4+ T cells
expressed FoxP3 in GL261-FnKD tumors. Besides, brain
samples of animals bearing fibronectin-knockdown tumors
showed delayed Treg recruitment. All those data suggest
that the knockdown of fibronectin expression can prepare
a reduced immunosuppressive environment.
The lactose binding lectin Galectin-1 (Gal-1), which

is overexpressed in GBM, have an immunosuppressive
and chemo- and immunotherapy resistance properties in
tumor.209 Rubinstein et al. found that inhibition of Gal-
1 induced a generation of the tumor-specific Th1-type
immune response in vivo.210 In 2017, an investigation of
the consequences of reducing Gal-1 in the TME during the
GBM progression on both myeloid and lymphoid compart-
ments of the immune system was conducted by Matthias
Van Woensel and co-workers. The results shown that the

reduction of Gal-1 could induce an alleviation from the
immune suppression, while increasing the immune activa-
tion (Fig. 9).211

Natural Killer (NK) Cells
Natural killer (NK) cells were originally defined as effector
lymphocytes of innate immunity endowed with constitu-
tive cytolytic functions.212–214 Natural killer cells are part
of the innate immune defense system which serve as a very
important role in host defense through apoptotic killing of
tumor cells.215–217 Due to the lack of antigen-specific cell
surface receptors, they are generally considered as com-
ponents of innate immune defense. Recent reports have
clarified that NK cells presented within humans and mice
participated in the early control against virus infection,
especially in tumor immune-surveillance.218 It is generally
considered that NKG2D operates as an activating receptor
on natural killer (NK) cells and mediates tumor immune
surveillance. The induction of stress-inducible ligands for
the activatory NK cell receptor NKG2D may prompt early
recognition of transformed cells. Using siRNA-mediated
silencing of HLA-E, which had an immune-inhibitory
effect on tumor-specific CTL, enabled NKG2D-mediated
lysis of Ref. [51] Cr-labeled tumor cells by NK cells.

10 J. Biomed. Nanotechnol. 13, 1–20, 2017
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Figure 8. Astrocytic Cx43 promotes dissemination of glioma cells. (A) Increased Cx43 staining (white arrow) adjacent to GL261
cells (white asterisk) that were protruding into the brain parenchyma. Nuclei were stained blue with 4′-6-diamidino-2-phenylindole
(DAPI). (B) Low magnification overview of control (Cx43fl/fl ) and Cx43-null (Nestin-Cre:Cx43fl/fl ) brains implanted with GL261
glioma cells (red) showing Cx43 (green) expression in control brains. Nuclei were stained blue with DAPI. White arrows indicate
region with increased Cx43 expression. (C, Upper) Magnified image showing expression of Cx43 (green) adjacent to GL261 glioma
cells (red) in control (Cx43fl/fl ) but not in Cx43-null (Nestin-Cre:Cx43fl/fl ) brains. Nuclei were stained blue with DAPI. (Lower)
Semi-quantitative analysis of Cx43 immunoreactivity at the peri-tumor by Image J. ∗P < 0�001 (Mann-Whitney rank-sum test).
(D) Cresyl violet-stained glioma sections showing circumscribed border in the Cx43-null brain compared with the control. Scale
bar = 200 �m. Increased percentage of tumor border with infiltrative cells in control (n = 6) compared with Cx43-null brains
(n = 5). ∗Po0.05 (Student’s t-test). (e) Increased number of mCherry-positive GL261 glioma cells in the brain parenchyma adjacent
to the glioma border (white line) in control wild-type (n = 5) compared with Cx43-null brains (n = 5). ∗P < 0�05. Data are shown
as mean±s.e.m. Reprinted with permission from [197], W. C. Sin, et al., Astrocytes promote glioma invasion via the gap junction
protein connexin43. Oncogene 35, 1504 (2016). © 2016, Nature Publishing Group.

Lectin-like transcript-1 (LLT1), which is expressed on
cells of lymphocytic origin, is a newly identified ligand
for the inhibitory natural killer (NK) cell receptor CD161.
LLT1 contributes to tumor-associated immunosuppression

by affecting the lytic activity of NK cells. Weller et al.
reported that small interfering RNA (siRNA)-mediated
down-regulation of LLT1 in LNT-229 and LN-428 cells
could promote their lysis by NK cells.219

J. Biomed. Nanotechnol. 13, 1–20, 2017 11



RNAi-Based Immunomodulation for Glioblastoma Immune Microenvironment: A Review Qiao et al.

Figure 9. siGal-1 alleviates immune suppression and induces immune activation during GBM progression. Flow cytometry was
performed on isolated mononuclear brain infltrating cells of mice that were left untreated, or treated with siGal-1 on day 4, 8,
12 and 15 after tumor inoculation, and brains were isolated at day 20. Different stainings assess several cell populations with
(A) the myeloid cells, with monocytes as gated by ZY−, CD45+, CD11b+; monocytic MDSCs as ZY−, CD45+, CD11b+, Ly6C+; M1
macrophage phenotype as CD45+, CD11b+, ZY−, MRC−, MHCIIhigh; M2 macrophage phenotype as CD45+, CD11b+, ZY−, MRC+,
MHCIIlow. (B) The lymphoid cells with leukocytes, as single cells, ZY−, CD45+; lymphocytes as single cells, ZY−, CD45+, CD3+,
CD4 lymphoctyes as single cells, ZY−, CD45+, CD3+, CD4+; T1 as single cells, ZY−, CD45+, CD3+, CD4+, IFN�+ gated to CD45+;
CD8 lymphocytes as single cells, ZY−, CD45+, CD3+, CD8+; CTL as single cells, ZY−, CD45+, CD3+, CD8+, IFN�+ gated to CD45;
Tregs, as gated by single cells, ZY−, CD45+, CD3+, CD4+, FoxP3+; (C) the ratio immune activation to immune suppression was
calculated for T1 (IFN�+ CD4+ CD3+ CD45+ ZY−) and (D) CTL (IFN�+ CD8116+ CD3+ CD45+ ZY−), as compared to Treg (FoxP3+

CD4+ CD3+ CD45+). White bars represent the siGal-1 treated mice, black bars are control tumor bearing mice and groups were
compared with unpaired t-test (n = 5/10 per group, ∗p < 0�05, ∗∗p < 0�01). Reprinted with permission from [211], M. Van Woensel,
et al., Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down
strategy. Sci. Rep. 7, 1217 (2017). © 2017, Scientific Reports.

Therapeutic approaches directly focus on immune cells
exhibit better behavior against glioblastoma. Through
modulating the performance of the immune cells, the
immune microenvironment can be regulated and the anti-
tumor efficiency can be enhanced. However, the ther-
apeutic effect is insufficient by single factor immune
modulation due to the complex immune environment of

glioblastoma. As previously reported, a variety of tar-
get genes associated with suppressive tumor microenvi-
ronment played important roles in the immune regulation
of the tumor microenvironment (Table I).220 Collectively,
combination of RNAi-based immunomodulation with
other therapeutics need to explore for efficient treatment of
glioblastoma.
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Table I. Target genes in the suppressive tumor microenvironment.

Gene/protein Target cell(s) Strategy

CCL2 TAMs siRNA to ↓ expression
IL-6 TAMs siRNA to ↓ expression
Dominant negative CCL2 mutant gene (7ND) TAMs Gene transfer to ↑ expression
CCL16 TAMs Gene transfer to ↑ expression
IL-10 TAMs, Tregs siRNA to ↓ expression
Heme oxygenase-1 (HO-1) Tregs siRNA to ↓ expression
Transforming growth factor-� (TGF-�) TAMs, MDSC, Tregs siRNA to ↓ expression
STAT1 MDSC siRNA to ↓ expression
Indoleamine 2,3-dioxygenase (IDO) APCs siRNA to ↓ expression
IL-6, IL-8, CCL22 Tumor (with goal to prevent TAM recruitment) siRNA to ↓ expression
CXCL12, SDF-la, CCL2, CXCL5, KIT ligand,

IL-1� GM-CSF, VEGF
Tumor (with goal to prevent MDSC recruitment) siRNA to ↓ expression

CCL5 Tumor (with goal to prevent Treg recruitment) siRNA to ↓ expression

Source: Reprinted with permission from [220]. E. A. Vasievich and L. Huang, The suppressive tumor microenvironment: A challenge in cancer immunotherapy.
Mol. Pharmaceut. 8, 635 (2011). © 2011, American Chemical Society.

STRATEGIES COMBING WITH IMMUE
MICROENVIRONMENT MODULATION
To achieve optimal treatment efficiency, different ther-
apy strategies coupled with immunotherapy, especially
immunomodulation, are now be used. For example, the
main determinant of the resistance to the alkylating agent
temozolomide (TMZ) is O6-methylguanine-DNA methyl-
transferase (MGMT). The downregulation of MGMT
seems improve the sensitivity of glioma to TMZ.221 In
2010, Kato et al. used a novel liposome (LipoTrust
EX Oligo) to delivery small-interfering RNA (siRNA for
MGMT) into GBM-initiating cells (GICs). The knock-
down of MGMT expression was investigated by using an
MGMT-siRNA/LipoTrust complex. MGMT was expressed
in 99% of the tumor cells administered with control
siRNA, compared with only 7% of cells in MGMT-
siRNA-administered tumors. More importantly, treatment
of subcutaneous tumor models with a combination of
MGMT-siRNA and TMZ showed a significant decrease in
tumor growth (<2500 mm3�, while mice that were admin-
istered TMZ or siRNA alone showed slight tumor reduc-
tion (>5000/10000 mm3, respectively).222

Similarly, strategy to improve the radio-sensitivity of
glioma cells is a feasible solution to augment the effi-
cacy of radiotherapy. It is reported that signal trans-
ducer and activator of transcription 3 (STAT3) inhibition
could enhance the sensitivity of radiotherapy in glioma.223

In 2015, Liu and colleagues found that inhibition of STAT3
signaling as well as autophagy could further increase the
radio-sensitivity of glioma cells.224

Although current immunomodulatory drugs and thera-
pies for treating brain tumors have been discussed, new
and potentially groundbreaking strategies are on the hori-
zon. In addition, in order to maximize therapeutic bene-
fit, systematic investigation of potential variables that may
impact the optimal activity of immunotherapies and the
evaluation of potentially informative biomarkers will be
required.

CONCLUSIONS AND PERSPECTIVES
In this review, we summary the characters of glioma
related microenvironment and the current therapeutics by
using RNAi technology. Two components are major “cul-
prits” which promote the immunosuppression microen-
vironment. One is the feather of tumor cell, including
secreted cytokines and surface molecules; another issue is
the involved surrounding cells, such as APC, DC, T cells
and so on, as well as signaling pathway. Based on those
theoretical foundations and experimental results, it is a
great promising strategy to modulate the immune microen-
vironment and enhance the efficiency of anti-glioblastoma
therapy by utilizing RNAi technology.
Considering the complex brain tumor microenviron-

ment, optimized combination strategies are urgently
needed to obtain great effective therapy, including
cytotoxic (chemotherapy, radiotherapy) and immune-
stimulatory approaches (immunomodulation). For exam-
ple, different siRNA with multiple targets can be utilized
into one treatment system. Those synergetic strategies col-
lectively enhance the efficacy of glioblastoma treatment
via accurately silencing related protein expression.
Nevertheless, using RNAi to improve the immune

microenvironment remains several challenges. Firstly,
highly specific targeting should be exactly executed
in vivo, thus avoiding off-target effects. Secondly, more
stable and potent RNAi systems play an important role in
fulfilling higher gene suppression following by a success
tumor immunomodulation. With the deeper understand-
ing of immune mechanisms involving the CNS/glioma
immunobiology, more immunological targets are identi-
fied, and further relationships between glioblastoma and
immune microenvironment are explored. All of these will
lead us the way for the development of powerful combina-
tion therapies against glioblastoma and other brain tumors.
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